
Introduction to Oop and Java Fundamentals 1.1

 INTRODUCTION TO OOP AND JAVA FUNDAMENTALS

1.1 Object-Oriented PrOgramming
Object-oriented programming (OOP) is a programming paradigm based on the concept of

“objects”, which may contain data, in the form of fields, often known as attributes; and code,
in the form of procedures, often known as methods.

List of object-oriented programming languages

Ada 95 Fortran 2003 PHP since v4, greatly enhanced in v5

BETA Graphtalk Python

C++ IDLscript Ruby

C# J# Scala

COBOL Java Simula

Cobra LISP Smalltalk

ColdFusion Objective-C Tcl

Common Lisp Perl since v5

abstraction
Abstraction is one of the key concepts of object-oriented programming (OOP) languages.

Its main goal is to handle complexity by hiding unnecessary details from the user. This en-
ables the user to implement more complex logic on top of the provided abstraction without
understanding about all the hidden complexity.

For example, people do not think of a car as a set of tens of thousands of individual parts.
They think of it as a well-defined object with its own unique behavior. This abstraction allows
people to use a car to drive to the desired location without worrying about the complexity of
the parts that form the car. They can ignore the details of how the engine, transmission, and
braking systems work. Instead, they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows us to layer the semantics of complex systems, breaking them into more manage-
able pieces.

Hierarchical abstractions of complex systems can also be applied to computer •	
programs.

The data from a traditional process-oriented program can be transformed by abstraction •	
into its component objects.

A sequence of process steps can become a collection of messages between these •	
objects.

Thus, each of these objects describes its own unique behavior. •	

We can treat these objects as concrete entities that respond to messages telling them •	
to do something.

Objects and classes
Object

Objects have states and behaviors. Example: A dog has states - color, name, breed as well
as behaviors – wagging the tail, barking, eating. An object is an instance of a class.

class
A class can be defined as a template/blueprint that describes the behavior/state that the

object of its type support.

Objects in java
If we consider the real-world, we can find many objects around us, cars, dogs, humans,

etc. All these objects have a state and a behavior.

If we consider a dog, then its state is - name, breed, color, and the behavior is - barking,
wagging the tail, running.

If we compare the software object with a real-world object, they have very similar char-
acteristics.

Software objects also have a state and a behavior. A software object’s state is stored in
fields and behavior is shown via methods.

So in software development, methods operate on the internal state of an object and the
object-to-object communication is done via methods.

classes in java
A class is a blueprint from which individual objects are created.

Following is an example of a class.

public class Dog {

 String breed;

 int age;

 String color;

 void barking()

 {

 }

}

A class can contain any of the following variable types.
Local variables•	 − Variables defined inside methods, constructors or blocks are called
local variables. The variable will be declared and initialized within the method and
the variable will be destroyed when the method has completed.

Instance variables•	 − Instance variables are variables within a class but outside
any method. These variables are initialized when the class is instantiated. Instance
variables can be accessed from inside any method, constructor or blocks of that
particular class.

Class variables•	 − Class variables are variables declared within a class, outside any
method, with the static keyword.

A class can have any number of methods to access the value of various kinds of methods.
In the above example, barking(), hungry() and sleeping() are methods.

encapsulation
Encapsulation is the mechanism that binds together code and the data it manipulates, and

keeps both safe from outside interference and misuse.

In Java, the basis of encapsulation is the class. There are mechanisms for hiding the •	
complexity of the implementation inside the class.

Each method or variable in a class may be marked private or public. •	

The public interface of a class represents everything that external users of the class •	
need to know, or may know.

The private methods and data can only be accessed by code that is a member of the •	
class.

Therefore, any other code that is not a member of the class cannot access a private •	
method or variable.

Since the private members of a class may only be accessed by other parts of program •	
through the class’ public methods, we can ensure that no improper actions take
place.

inheritance
Inheritance is the process by which one object acquires the properties of another object.

For example, a Dog is part of the classification Mammal, which in turn is part of the Ani-
mal class. Without the use of hierarchies, each object would need to define all of its charac-
teristics explicitly. However, by use of inheritance, an object need only define those qualities
that make it unique within its class. It can inherit its general attributes from its parent. Thus,
inheritance makes it possible for one object to be a specific instance of a more general case.

Polymorphism
Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface

to be used for a general class of actions. The specific action is determined by the exact nature
of the situation.

For eg, a dog’s sense of smell is polymorphic. If the dog smells a cat, it will bark and run
after it. If the dog smells its food, it will salivate and run to its bowl. The same sense of smell
is at work in both situations. The difference is what is being smelled, that is, the type of data
being operated upon by the dog’s nose.

Consider a stack (which is a last-in, first-out LIFO list). We might have a program that re-
quires three types of stacks. One stack is used for integer values, one for floating-point values,
and one for characters. The algorithm that implements each stack is the same, even though
the data being stored differs.

1.2 OOP cOncePts in java
OOP concepts in Java are the main ideas behind Java’s Object Oriented Programming.

They are:

Object
Any entity that has state and behavior is known as an object. It can be either physical or

logical.

For example: chair, pen, table, keyboard, bike etc.

class & instance

Class Name

Static Attributes

Dynamic Behaviors

Figure: Class Structure

The followings figure shows two classes ‘Student’ and ‘Circle’.

Name (Identifier) student circle
Variables (Static Attributes) name, gender, dept, marks radius, color
Methods
(Dynamic Behaviors)

getDetails()
calculateGrade()

getRadius()
printArea()

Figure: Examples of classes

A class can be visualized as a three-compartment box, as illustrated:

Name (or identity): identifies the class.1.

Variables (or attribute, state, field): contain the static attributes of the class.2.

Methods (or behaviors, function, operation): contain the dynamic behaviors of the 3.
class.

An instance is an instantiation of a class. All the instances of a class have similar proper-
ties, as described in the class definition. The term “object” usually refers to instance.

For example, we can define a class called “Student” and create three instances of the class
“Student” for “John”, “Priya” and “Anil”.

The following figure shows three instances of the class Student, identified as “John”,
“Priya” and “Anil”.

Introduction to Oop and Java Fundamentals 1.5

Collection of objects of the same kind is called class. It is a logical entity.

A Class is a 3-Compartment box encapsulating data and operations as shown in figure.

1.6 Object Oriented Programming

John : Student Priya : Student Anil : Student
name = “John”

gender = “male”

name = “Priya”

gender = “female”

name = “Anil”

gender = “male”
dept = “CSE”

mark = 88

gender = “female”

dept = “IT”

gender = “male”

dept = “IT”
getDetails()

calculateGrade()

getDetails()

calculateGrade()

getDetails()

calculateGrade()

Figure: Instances of a class ‘Student’

abstraction
Abstraction refers to the quality of dealing with ideas rather than events. It basically deals

with hiding the details and showing the essential things to the user.

We all know how to turn the TV on, but we don’t need to know how it works in order to
enjoy it.

Abstraction means simple things like objects, classes, and variables represent more com-
plex underlying code and data. It avoids repeating the same work multiple times. In java, we
use abstract class and interface to achieve abstraction.

abstract class:
Abstract class in Java contains the ‘abstract’ keyword. If a class is declared abstract, it

cannot be instantiated. So we cannot create an object of an abstract class. Also, an abstract
class can contain abstract as well as concrete methods.

To use an abstract class, we have to inherit it from another class where we have to provide
implementations for the abstract methods there itself, else it will also become an abstract
class.

interface:
Interface in Java is a collection of abstract methods and static constants. In an interface,

each method is public and abstract but it does not contain any constructor. Along with ab-
straction, interface also helps to achieve multiple inheritance in Java.

So an interface is a group of related methods with empty bodies.

encapsulation
Binding (or wrapping) code and data together into a single unit is known as encapsulation.

It means to hide our data in order to make it safe from any modification.

The best way to understand encapsulation is to look at the example of a medical capsule,
where the drug is always safe inside the capsule. Similarly, through encapsulation the meth-
ods and variables of a class are well hidden and safe.

A java class is the example of encapsulation.

Encapsulation can be achieved in Java by:

inheritance
This is a special feature of Object Oriented Programming in Java. It lets programmers

create new classes that share some of the attributes of existing classes.

For eg, a child inherits the properties from his father.

Similarly, in Java, there are two classes:

1. Parent class (Super or Base class)

2. Child class (Subclass or Derived class)

A class which inherits the properties is known as ‘Child class’ whereas a class whose
properties are inherited is known as ‘Parent class’.

Inheritance is classified into 4 types:

single inheritance
It enables a derived class to inherit the properties and behavior from a single parent

class.

Here, Class A is a parent class and Class B is a child class which inherits the properties
and behavior of the parent class.

•	 Declaring the variables of a class as private.

•	 Providing public setter and getter methods to modify and view the variables values.

multilevel inheritance
When a class is derived from a class which is also derived from another class, i.e. a class

having more than one parent class but at different levels, such type of inheritance is called
Multilevel Inheritance.

Here, class B inherits the properties and behavior of class A and class C inherits the prop-
erties of class B. Class A is the parent class for B and class B is the parent class for C. So, class
C implicitly inherits the properties and methods of class A along with Class B.

Hierarchical inheritance
When a class has more than one child class (sub class), then such kind of inheritance is known
as hierarchical inheritance.

Here, classes B and C are the child classes which are inheriting from the parent class A.

Hybrid inheritance
Hybrid inheritance is a combination of multiple inheritance and multilevel inheritance.

Since multiple inheritance is not supported in Java as it leads to ambiguity, this type of inheri-
tance can only be achieved through the use of the interfaces.

Here, class A is a parent class for classes B and C, whereas classes B and C are the parent
classes of D which is the only child class of B and C.

Polymorphism
Polymorphism means taking many forms, where ‘poly’ means many and ‘morph’ means

forms. It is the ability of a variable, function or object to take on multiple forms. In other
words, polymorphism allows us to define one interface or method and have multiple imple-
mentations.

For eg, Bank is a base class that provides a method rate of interest. But, rate of interest
may differ according to banks. For example, SBI, ICICI and AXIS are the child classes that
provide different rates of interest.

Polymorphism in Java is of two types:

Run time polymorphism•	

Compile time polymorphism•	

run time polymorphism:
In Java, runtime polymorphism refers to a process in which a call to an overridden method

is resolved at runtime rather than at compile-time. Method overriding is an example of run
time polymorphism.

compile time polymorphism:
In Java, compile time polymorphism refers to a process in which a call to an overloaded

method is resolved at compile time rather than at run time. Method overloading is an example
of compile time polymorphism.

1.3 cHaracteristics Of java
simple :

Java is Easy to write and more readable.•	

Java has a concise, cohesive set of features that makes it easy to learn and use.•	

Most of the concepts are drawn from C++, thus making Java learning simpler.•	

1.10 Object Oriented Programming

secure :
Java program cannot harm other system thus making it secure.•	

Java provides a secure means of creating Internet applications.•	

Java provides secure way to access web applications.•	

Portable :
Java programs can execute in any environment for which there is a Java run-time •	
system.

Java programs can run on any platform (Linux, Window, Mac)•	

Java programs can be transferred over world wide web (e.g applets)•	

Object-oriented :
Java programming is object-oriented programming language.•	

Like C++, java provides most of the object oriented features.•	

Java is pure OOP Language. (while C++ is semi object oriented)•	

robust :
Java encourages error-free programming by being strictly typed and performing run-•	
time checks.

multithreaded :
Java provides integrated support for multithreaded programming.•	

architecture-neutral :
Java is not tied to a specific machine or operating system architecture.•	

Java is machine independent. •	

interpreted :
Java supports cross-platform code through the use of Java bytecode.•	

Bytecode can be interpreted on any platform by JVM (Java Virtual Machine).•	

High performance :
Bytecodes are highly optimized.•	

JVM can execute bytecodes much faster .•	

distributed :
Java is designed with the distributed environment.•	

Java can be transmitted over internet.•	

dynamic :
Java programs carry substantial amounts of run-time type information with them that •	
is used to verify and resolve accesses to objects at run time.

1.4 Java RuNtIme eNvIRoNmeNt (JRe)
The Java Runtime Environment (JRE) is a set of software tools for development of Java

applications. It combines the Java Virtual Machine (JVM), platform core classes and support-
ing libraries.

JRE is part of the Java Development Kit (JDK), but can be downloaded separately. JRE
was originally developed by Sun Microsystems Inc., a wholly-owned subsidiary of Oracle
Corporation.

JRE consists of the following components:

name of the component elements of the component
Deployment technologies Deployment

Java Web Start

Java Plug-in
User interface toolkits Abstract Window Toolkit (AWT)

Swing

Java 2D

Accessibility

Image I/O

Print Service

Sound

Drag and Drop (DnD)

Input methods.
Integration libraries Interface Definition Language (IDL)

Java Database Connectivity (JDBC)

Java Naming and Directory Interface (JNDI)

Remote Method Invocation (RMI)

Remote Method Invocation Over Internet
Inter-Orb Protocol (RMI-IIOP)

Scripting.

base libraries International support

Input/Output (I/O)

Eextension mechanism

Beans

Java Management Extensions (JMX)

Java Native Interface (JNI)

Math

Networking

Override Mechanism

Security

Serialization and Java for XML Processing
(XML JAXP).

Lang and util base libraries lang and util

Management

Versioning

Zip

Instrument

Reflection

Collections

Concurrency

Java Archive (JAR)

Logging

Preferences API

Ref Objects

Regular Expressions.

Java Virtual Machine (JVM) Java HotSpot Client

Server Virtual Machines

1.5 Java vIRtual machINe (Jvm)
The JVM is a program that provides the runtime environment necessary for Java pro-

grams to execute. Java programs cannot run without JVM for the appropriate hardware and
OS platform.

Java programs are started by a command line, such as:

java <arguments> <program name>

This brings up the JVM as an operating system process that provides the Java runtime
environment. Then the program is executed in the context of an empty virtual machine.

When the JVM takes in a Java program for execution, the program is not provided as
Java language source code. Instead, the Java language source must have been converted (or
compiled) into a form known as Java bytecode. Java bytecode must be supplied to the JVM
in a format called class files. These class files always have a .class extension.

The JVM is an interpreter for the bytecode form of the program. It steps through one
bytecode instruction at a time. It is an abstract computing machine that enables a computer
to run a Java program.

1.6 setting uP an envirOnment fOr java
 Local environment setup

Download Java and run the .exe to install Java on the machine.

setting up the Path for Windows
Assuming Java is installed in c:\Program Files\java\jdk directory −

Right-click on ‘My Computer’ and select ‘Properties’.•	

Click the ‘Environment variables’ button under the ‘Advanced’ tab.•	

Now, alter the ‘Path’ variable so that it also contains the path to the Java executable. •	
Example, if the path is currently set to ‘C:\WINDOWS\SYSTEM32’, then change
your path to read ‘C:\WINDOWS\SYSTEM32;c:\Program Files\java\jdk\bin’.

1.7 POPuLar java editOrs
To write Java programs, we need any of the following:

notepad•	 − Text editor

netbeans•	 − A Java IDE that is open-source and free

eclipse•	 − A Java IDE developed by the eclipse open-source community

1.8 java sOurce fiLe structure
When we write a Java source program, it needs to follow a certain structure or template

as shown in the following figure:

Figure: Java Source File Structure

Packages are used in Java in order to prevent naming conflicts, to control access, to make
searching/locating and usage of classes, interfaces, enumerations and annotations easier, etc.

A Java source file can have the following elements that must be specified in the following
order:

An optional package declaration to specify a package name.1.

Zero or more import declarations.2.

Any number of top-level type declarations. Class, enum, and interface declarations 3.
are collectively known as type declarations.

Part 1: Optional Package Declaration
A package is a pack (group) of classes, interfaces and other packages. Packages are used

in Java in order to prevent naming conflicts, to control access, to make searching / locating
and usage of classes, interfaces, enumerations and annotations easier, etc.

Rules:

The package statement should be the first line in the source file. •	

There can be only one package statement in each source file.•	

If a package statement is not used, the class, interfaces, enumerations, and annotation •	
types will be placed in the current default package.

It is a good practice to use names of packages with lower case letters to avoid any •	
conflicts with the names of classes and interfaces.

Following package example contains interface named animals:

/* File name : Animal.java */

package animals;

interface Animal

{

 public void eat();

 public void travel();

}

Part 2: Zero or More import Declarations
The import statement makes the declarations of external classes available to the current

Java source program at the time of compilation. The import statement specifies the path for
the compiler to find the specified class.

syntax of the import statement:

import packagename;

or

import packagename.* ;

We may import a single class or all the classes belonging to a package.

To import a single class, we specify the name of the class•	

To import all classes, we specify *.•	

/* File name : Animal.java */

package animals;

interface Animal

{

 public void eat();

 public void travel();

}

Examples of the import statement:

statement in java Purpose
import mypackage.MyClass; imports the definition of the MyClass

class that is defined in the mypackage
package.

import mypackage.reports.accounts.salary.
EmpClass;

imports the definition of EmpClass
belonging to the mypackage.reports.
accounts.salary package.

import java.awt.*; imports all the classes belonging to the
java.awt package.

Part 3: Zero or More top-level Declarations
The Java source file should have one and only one public class. The class name which is

defined as public should be the name of Java source file along with .java extension.

Source File Declaration Rules
There can be only one public class per source file.•	

A source file can have multiple non-public classes.•	

The public class name should be the name of the source file which should have •	
.java extension at the end.

For eg, if the class name is public class Employee{}, then the source file should be •	
as Employee.java.

If the class is defined inside a package, then the package statement should be the first •	
statement in the source file.

If import statements are present, then they must be written between the package •	
statement and the class declaration. If there are no package statements, then the
import statement should be the first line in the source file.

Import and package statements will imply to all the classes present in the source file. •	
It is not possible to declare different import and/or package statements to different
classes in the source file.

1.9 cOmPiLatiOn
In Java, programs are not compiled into executable files. Java source code is compiled

into bytecode using javac compiler. The bytecodes are platform-independent instructions for
the Java VM. They are saved on the disk with the file extension .class. When the program
is to be run, the bytecode is converted into the machine code using the just-in-time (JIT) com-
piler. It is then fed to the memory and executed.

Java code needs to be compiled twice in order to be executed:
Java programs need to be compiled to bytecode.1.

When the bytecode is run, it needs to be converted to machine code.2.

The Java classes / bytecode are compiled to machine code and loaded into memory by the
JVM when needed for the first time.

compiling the Program
The Java compiler is invoked at the command line with the following syntax:

javac ExampleProgram.java

interpreting and running the Program
Once the java program successfully compiles into Java bytecodes, we can interpret and

run applications on any Java VM, or interpret and run applets in any Web browser with a Java
VM built in such as Netscape or Internet Explorer. Interpreting and running a Java program
means invoking the Java VM byte code interpreter, which converts the Java byte codes to
platform-dependent machine codes so your computer can understand and run the program.

The Java interpreter is invoked at the command line with the following syntax:

java ExampleProgram

Quick compilation procedure
To execute the first Java program, follow the steps:

Open text editor. For example, Notepad or Notepad++ on Windows; Gedit, Kate or 1.
SciTE on Linux; or, XCode on Mac OS, etc.

Type the java program in a new text document.2.

Save the file as HelloWorld.java.3.

Next, open any command-line application. For example, Command Prompt on 4.
Windows; and, Terminal on Linux and Mac OS.

Compile the Java source file using the command: javac HelloWorld.java5.

Once the compiler returns to the prompt, run the application using the following 6.
command:

 java HelloWorld

1.10 fundamentaL PrOgramming structures in java
java comments

The java comments are statements that are not executed by the compiler and interpreter.
The comments can be used to provide information or explanation about the variable, method,
class or any statement. It can also be used to hide program code for specific time.

Types of Java Comments

There are 3 types of comments in java.

Single Line Comment1.

Multi Line Comment2.

Documentation Comment3.

1) Java Single line comment
The single line comment is used to comment only one line. A single-line comment begins

with a // and ends at the end of the line.

syntax example
//Comment //This is single line comment

2) Java multi line comment
This type of comment must begin with /* and end with */. Anything between these two

comment symbols is ignored by the compiler. A multiline comment may be several lines
long.

syntax example
/*Comment starts

continues

continues

.

.

.

Commnent ends*/

/* This is a

multi line

comment */

3) Java Documentation comment
This type of comment is used to produce an HTML file that documents our program. The

documentation comment begins with a /** and ends with a */.

syntax example
/**Comment start

*

*tags are used in order to specify a parameter

*or method or heading

*HTML tags can also be used

*such as <h1>

*

comment ends/

/**

This

is

documentation

comment

*/

 1.11 data tyPes
Java is a statically typed and also a strongly typed language. in Java, each type of data

(such as integer, character, hexadecimal, etc.) is predefined as part of the programming lan-
guage and all constants or variables defined within a given program must be described with
one of the data types.

Data types represent the different values to be stored in the variable. In java, there are two
categories of data types:

Primitive data typeso

Non-primitive data typeso

Figure: Data types in java

the Primitive types
Java defines eight primitive types of data: byte, short, int, long, char, float, double, and

boolean. The primitive types are also commonly referred to as simple types and they are
grouped into the following four groups:

Integersi) - This group includes byte, short, int, and long. All of these are signed,
positive and negative values. The width and ranges of these integer types vary widely,
as shown in the following table:

name Width in bits range
long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
int 32 –2,147,483,648 to 2,147,483,647
short 16 –32,768 to 32,767
byte 8 –128 to 127

table: integer data types
Floating-point numbersii) – They are also known as real numbers. This group includes
float and double, which represent single- and double-precision numbers, respectively.
The width and ranges of them are shown in the following table:

Table: Floating-point Data Types

name Width in bits range
double 64 4.9e–324 to 1.8e+308
float 32 1.4e–045 to 3.4e+038

Charactersiii) - This group includes char, which represents symbols in a character set,
like letters and numbers. char is a 16-bit type. The range of a char is 0 to 65,536.
There are no negative chars.

Booleaniv) - This group includes boolean. It can have only one of two possible values,
true or false.

1.12 variabLes
A variable is the holder that can hold the value while the java program is executed. A

variable is assigned with a datatype. It is name of reserved area allocated in memory. In
other words, it is a name of memory location. There are three types of variables in java: local,
instance and static.

A variable provides us with named storage that our programs can manipulate. Each vari-
able in Java has a specific type, which determines the size and layout of the variable’s mem-
ory; the range of values that can be stored within that memory; and the set of operations that
can be applied to the variable.

Before using any variable, it must be declared. The following statement expresses the
basic form of a variable declaration –

datatype variable [= value][, variable [= value] ...] ;

Here data type is one of Java’s data types and variable is the name of the variable. To de-
clare more than one variable of the specified type, use a comma-separated list.

Example
 int a, b, c; // Declaration of variables a, b, and c.

 int a = 20, b = 30; // initialization

 byte B = 22; // Declaratrion initializes a byte type variable B.

Types of Variable
There are three types of variables in java:

local variable•	

instance variable•	

static variable•	

Fig. Types of variables

Local variable
Local variables are declared inside the methods, constructors, or blocks.•	

Local variables are created when the method, constructor or block is entered •	

Local variable will be destroyed once it exits the method, constructor, or block.•	

Local variables are visible only within the declared method, constructor, or block.•	

Local variables are implemented at stack level internally.•	

There is no default value for local variables, so local variables should be declared and •	
an initial value should be assigned before the first use.

Access specifiers cannot be used for local variables.•	

instance variable
A variable declared inside the class but outside the method, is called instance variable. •	
Instance variables are declared in a class, but outside a method, constructor or any
block.

A slot for each instance variable value is created when a space is allocated for an •	
object in the heap.

Instance variables are created when an object is created with the use of the keyword •	
‘new’ and destroyed when the object is destroyed.

Instance variables hold values that must be referenced by more than one method, •	
constructor or block, or essential parts of an object’s state that must be present
throughout the class.

Instance variables can be declared in class level before or after use.•	

Access modifiers can be given for instance variables.•	

The instance variables are visible for all methods, constructors and block in the •	
class. It is recommended to make these variables as private. However, visibility for
subclasses can be given for these variables with the use of access modifiers.

Instance variables have default values. •	

numbers, the default value is 0, ○

Booleans it is false, ○

Object references it is null. ○

Values can be assigned during the declaration or within the constructor.•	

Instance variables cannot be declared as static.•	

Instance variables can be accessed directly by calling the variable name inside the class. •	
However, within static methods (when instance variables are given accessibility), they
should be called using the fully qualified name. ObjectReference.VariableName.

static variable
Class variables also known as static variables are declared with the static keyword in •	
a class, but outside a method, constructor or a block.

Only one copy of each class variable per class is created, regardless of how many •	
objects are created from it.

Static variables are rarely used other than being declared as constants. Constants are •	
variables that are declared as public/private, final, and static. Constant variables never
change from their initial value.

Static variables are stored in the static memory. It is rare to use static variables other •	
than declared final and used as either public or private constants.

Static variables are created when the program starts and destroyed when the program •	
stops.

Visibility is same as instance variables. However, most static variables are declared •	
public since they must be available for users of the class.

Default values are same as instance variables. •	

numbers, the default value is 0; ○

Booleans, it is false; ○

Object references, it is null. ○

Values can be assigned during the declaration or within the constructor. Additionally, •	
values can be assigned in special static initializer blocks.

Static variables cannot be local.•	

Static variables can be accessed by calling with the class name ClassName.•	
VariableName.

When declaring class variables as public static final, then variable names (constants) •	
are all in upper case. If the static variables are not public and final, the naming syntax
is the same as instance and local variables.

1.13 OPeratOrs
Operator in java is a symbol that is used to perform operations. Java provides a rich set

of operators to manipulate variables.For example: +, -, *, / etc.

All the Java operators can be divided into the following groups −

Arithmetic Operators :•	

Multiplicative : * / %

Additive : + -

Relational Operators•	

Comparison : < > <= >= instanceof

Equality : == !=

Bitwise Operators•	

bitwise AND : &

bitwise exclusive OR : ^

bitwise inclusive OR : |

Shift operator: << >> >>>

Logical Operators•	

logical AND : &&

logical OR : ||

logical NOT : ~ !

Assignment Operators: =•	

 Ternary operator: •	 ? :

Unary operator•	

Postfix : expr++ expr—

Prefix : ++expr --expr +expr -expr

the arithmetic Operators
Arithmetic operators are used to perform arithmetic operations in the same way as they

are used in algebra. The following table lists the arithmetic operators −

Example:
 int A=10,B=20;

Operator description example Output

+ (Addition) Adds values A & B. A + B 30

- (Subtraction) Subtracts B from A A - B -10

* (Multiplication) Multiplies values A & B A * B 200

/ (Division) Divides B by A B / A 2

% (Modulus)
Divides left-hand operand by right-
hand operand and returns remainder. B % A 0

// Java program to illustrate arithmetic operators
public class Aoperators

{

 public static void main(String[] args)

 {

 int a = 20, b = 10, c = 0, d = 20, e = 40, f = 30;

 String x = “Thank”, y = “You”;

 System.out.println(“a + b = “+(a + b));

 System.out.println(“a - b = “+(a - b));

 System.out.println(“x + y = “+x + y);

 System.out.println(“a * b = “+(a * b));

 System.out.println(“a / b = “+(a / b));

 System.out.println(“a % b = “+(a % b));

 }

}

the relational Operators
The following relational operators are supported by Java language.

Example:
int A=10,B=20;

Operator description example Output

== (equal to)
Checks if the values of two operands
are equal or not, if yes then condition
becomes true.

(A == B) true

!= (not equal to)
Checks if the values of two operands
are equal or not, if values are not equal
then condition becomes true.

(A != B) true

> (greater than)
Checks if the value of left operand is
greater than the value of right operand,
if yes then condition becomes true.

(A > B) true

< (less than)
Checks if the value of left operand is
less than the value of right operand, if
yes then condition becomes true.

(A < B) true

>= (greater than or
equal to)

Checks if the value of left operand is
greater than or equal to the value of
right operand, if yes then condition be-
comes true.

(A >= B) true

<= (less than or

equal to)

Checks if the value of left operand is
less than or equal to the value of right
operand, if yes then condition becomes
true.

(A <= B) true

instance of Operator

checks whether the object is of a partic-
ular type (class type or interface type)

(Object reference variable) instanceof
(class/interface type)

boolean re-
sult = name
instanceof

String;

True

// Java program to illustrate relational operators
public class operators

{

 public static void main(String[] args)

 {

 int a = 20, b = 10;

 boolean condition = true;

 //various conditional operators

 System.out.println(“a == b :” + (a == b));

 System.out.println(“a < b :” + (a < b));

 System.out.println(“a <= b :” + (a <= b));

 System.out.println(“a > b :” + (a > b));

 System.out.println(“a >= b :” + (a >= b));

 System.out.println(“a != b :” + (a != b));

 System.out.println(“condition==true :” + (condition == true));

 }

}

bitwise Operators
Java supports several bitwise operators, that can be applied to the integer types, long, int,

short, char, and byte. Bitwise operator works on bits and performs bit-by-bit operation.

Example:
int a = 60,b = 13;

binary format of a & b will be as follows −

a = 0011 1100

b = 0000 1101

Bitwise operators follow the truth table:

a b a&b a|b a^b ~a
0 0 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 0

1 1 1 1 1 0

 a&b = 0000 1100

 a|b = 0011 1101

 a^b = 0011 0001

 ~a = 1100 0011

The following table lists the bitwise operators −
int A=60,B=13;

Operator description example Output

& (bit-
wise and)

Binary AND Operator copies a
bit to the result if it exists in both
operands.

(A & B) will give 12
which is

12

(in binary
f o r m : 0 0 0 0
1100)

| (bitwise
or)

Binary OR Operator copies a bit
if it exists in either operand.

(A | B) 61

(in binary form:
0011 1101)

^ (bitwise
XOR)

Binary XOR Operator copies the
bit if it is set in one operand but
not both.

(A ^ B) will give 49
which is 0011 0001

49

(in binary form:
0011 0001)

~ (bitwise
compli-
ment)

Binary Ones Complement Opera-
tor is unary and has the effect of
‘flipping’ bits.

(~A) will give -61
which is 1100 0011
in 2’s complement
form due to a signed
binary number.

-61

(in binary form:
1100 0011)

<< (left
shift)

The left operands value is moved
left by the number of bits speci-
fied by the right operand.

A << 2 will give 240
which is 1111 0000

240

(in binary form:
1111 0000)

>> (right
shift)

The left operands value is moved
right by the number of bits speci-
fied by the right operand.

A >> 2 will give 15
which is 1111

15

(in binary form:
1111)

>>> (zero
fill right

shift)

The left operands value is moved
right by the number of bits speci-
fied by the right operand and
shifted values are filled up with
zeros.

A >>>2 will give 15
which is 0000 1111

15

(in binary form:
0000 1111)

// Java program to illustrate bitwise operators
public class operators

{

 public static void main(String[] args)

 {

 int a = 10;

 int b = 20;

 System.out.println(“a&b = “ + (a & b));

 System.out.println(“a|b = “ + (a | b));

 System.out.println(“a^b = “ + (a ^ b));

 System.out.println(“~a = “ + ~a);

 }

}

Logical Operators
The following are the logical operators supported by java.

Example:
A=true;

B=false;

Operator description example Ouptput

&& (logical
and)

If both the operands are non-zero,
then the condition becomes true. (A && B) false

|| (logical or) If any of the two operands are non-
zero, then the condition becomes
true.

(A || B) true

! (logical not) Use to reverses the logical state of its
operand. If a condition is true then
Logical NOT operator will make
false.

!(A && B) true

assignment Operators
The following are the assignment operators supported by Java.

Operator description example

=

(Simple
assignment
operator)

Assigns values from right side oper-
ands to left side operand.

C = A + B will as-
sign value of

A + B into C

+=

(Add AND
assignment
operator)

It adds right operand to the left operand
and assigns the result to left operand.

C += A is equiva-
lent to C = C + A

-=

(Subtract
AND
assignment
operator)

It subtracts right operand from the left
operand and assigns the result to left
operand.

C -= A is equiva-
lent to C = C – A

*=

(Multiply
AND
assignment
operator)

 It multiplies right operand with the left
operand and assigns the result to left
operand.

C *= A is equiva-
lent to C = C * A

/=

(Divide
AND
assignment
operator)

 It divides left operand with the right
operand and assigns the result to left
operand.

C /= A is equiva-
lent to C = C / A

%=

(Modulus
AND assign-
ment opera-
tor)

 It takes modulus using two operands
and assigns the result to left operand.

C %= A is equiva-
lent to C = C % A

<<= Left shift AND assignment operator. C <<= 2 is same as
C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as
C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as
C = C & 2

^= bitwise exclusive OR and assignment
operator.

C ^= 2 is same as
C = C ^ 2

|= bitwise inclusive OR and assignment
operator.

C |= 2 is same as C
= C | 2

// Java program to illustrate assignment operators
public class operators

{

 public static void main(String[] args)

 {

 int a = 20, b = 10, c, d, e = 10, f = 4, g = 9;

 c = b;

 System.out.println(“Value of c = “ + c);

 a += 1;

 b -= 1;

 e *= 2;

 f /= 2;

 System.out.println(“a, b, e, f = “ +

 a + “,” + b + “,” + e + “,” + f);

 }

}

ternary Operator
Conditional Operator (? :)

Since the conditional operator has three operands, it is referred as the ternary operator.
This operator consists of three operands and is used to evaluate Boolean expressions. The
goal of the operator is to decide, which value should be assigned to the variable. The operator
is written as –

variable x = (expression) ? value if true : value if false

Following is an example −
Example:

public class example

{

public static void main(String args[])

{

int a, b;

a = 10;

b = (a == 0) ? 20: 30;

System.out.println(“b : “ + b);

}

}

unary Operators
Unary operators use only one operand. They are used to increment, decrement or negate

a value.

Operator description

- Unary minus negating the values
+ Unary plus converting a negative value to positive
++ :Increment operator incrementing the value by 1
— : Decrement operator decrementing the value by 1
! : Logical not operator inverting a boolean value

// Java program to illustrate unary operators

public class operators

{

public static void main(String[] args)

{

int a = 20, b = 10, c = 0, d = 20, e = 40, f = 30;

boolean condition = true;

c = ++a;

System.out.println(“Value of c (++a) = “ + c);

c = b++;

System.out.println(“Value of c (b++) = “ + c);

c = --d;

System.out.println(“Value of c (--d) = “ + c);

c = --e;

System.out.println(“Value of c (--e) = “ + c);

System.out.println(“Value of !condition =” + !condition);

}

}

Precedence of java Operators
Operator precedence determines the grouping of operands in an expression. This affects

how an expression is evaluated. Certain operators have higher precedence than others; for
example, the multiplication operator has higher precedence than the addition operator −

For example, the following expression,
x = 10 + 5 * 2;

is evaluated. So, the output is 20, not 30. Because operator * has higher precedence
than +.

The following table shows the operators with the highest precedence at the top of the table
and those with the lowest at the bottom. Within an expression, higher precedence operators
will be evaluated first.

category Operator associativity

Postfix >() [] . (dot operator) Left to right

Unary >++ - - ! ~ Right to left

Multiplicative >* / Left to right

Additive >+ - Left to right

Shift >>> >>> << Left to right

Relational >> >= < <= Left to right

Equality >== != Left to right

Bitwise AND >& Left to right

Bitwise XOR >^ Left to right

Bitwise OR >| Left to right

Logical AND >&& Left to right

Logical OR >|| Left to right

Conditional ?: Right to left

Assignment >= += -= *= /= %= >>=
<<= &= ^= |=

Right to left

1.14 cOntrOL fLOW
Java Control statements control the flow of execution in a java program, based on data val-

ues and conditional logic used. There are three main categories of control flow statements;

Selection statements: if, if-else and switch.

Loop statements: while, do-while and for.

Transfer statements: break, continue, return, try-catch-finally and assert.

selection statements
 The selection statements checks the condition only once for the program execution.

if statement:
The if statement executes a block of code only if the specified expression is true. If the

value is false, then the if block is skipped and execution continues with the rest of the pro-
gram.

The simple if statement has the following syntax:

 if (<conditional expression>)

 <statement action>

The following program explains the if statement.
public class programIF{

public static void main(String[] args)

{

int a = 10, b = 20;

if (a > b)

System.out.println(“a > b”);

if (a < b)

System.out.println(“b < a”);

}

}

the if-else statement
The if/else statement is an extension of the if statement. If the condition in the if statement

fails, the statements in the else block are executed. The if-else statement has the following
syntax:

 if (<conditional expression>)

 <statement action>

 else

 <statement action>

The following program explains the if-else statement.

public class ProgramIfElse

{

public static void main(String[] args)

{

int a = 10, b = 20;

if (a > b)

{

System.out.println(“a > b”);

}

else

{

System.out.println(“b < a”);

}

}

}

switch case statement
The switch case statement is also called as multi-way branching statement with several

choices. A switch statement is easier to implement than a series of if/else statements. The
switch statement begins with a keyword, followed by an expression that equates to a no long
integral value.

After the controlling expression, there is a code block that contains zero or more labeled
cases. Each label must equate to an integer constant and each must be unique. When the
switch statement executes, it compares the value of the controlling expression to the values
of each case label.

 The program will select the value of the case label that equals the value of the control-
ling expression and branch down that path to the end of the code block. If none of the case
label values match, then none of the codes within the switch statement code block will be
executed.

Java includes a default label to use in cases where there are no matches. A nested switch
within a case block of an outer switch is also allowed. When executing a switch statement,
the flow of the program falls through to the next case. So, after every case, you must insert a
break statement.

The syntax of switch case is given as follows:
 switch (<non-long integral expression>) {

 case label1: <statement1>

 case label2: <statement2>

 …

 case labeln: <statementn>

 default: <statement>

 } // end switch

The following program explains the switch statement.
public class ProgramSwitch

{

public static void main(String[] args)

{

int a = 10, b = 20, c = 30;

int status = -1;

if (a > b && a > c)

{

status = 1;

}

else if (b > c)

{

status = 2;

}

else

{

status = 3;

}

switch (status)

{

case 1:System.out.println(“a is the greatest”);

break;
case 2:System.out.println(“b is the greatest”);
break;
case 3:System.out.println(“c is the greatest”);
break;
default:System.out.println(“Cannot be determined”);
}
}
}

iteration statements
Iteration statements execute a block of code for several numbers of times until the condi-

tion is true.

While statement
The while statement is one of the looping constructs control statement that executes a

block of code while a condition is true. The loop will stop the execution if the testing expres-
sion evaluates to false. The loop condition must be a boolean expression. The syntax of the
while loop is

 while (<loop condition>)

 <statements>

The following program explains the while statement.
public class ProgramWhile

{

public static void main(String[] args)

{

int count = 1;

System.out.println(“Printing Numbers from 1 to 10”);

while (count <= 10)

{

System.out.println(count++);}

}

}

}

do-while Loop statement
The do-while loop is similar to the while loop, except that the test condition is performed

at the end of the loop instead of at the beginning. The do—while loop executes atleast once
without checking the condition.

It begins with the keyword do, followed by the statements that making up the body of the
loop. Finally, the keyword while and the test expression completes the do-while loop. When
the loop condition becomes false, the loop is terminated and execution continues with the
statement immediately following the loop.

The syntax of the do-while loop is
do

<loop body>

while (<loop condition>);

The following program explains the do--while statement.

public class DoWhileLoopDemo {

public static void main(String[] args) {

int count = 1;

System.out.println(“Printing Numbers from 1 to 10”);

do {

System.out.println(count++);

} while (count <= 10);

}

}

for Loop
The for loop is a looping construct which can execute a set of instructions for a specified

number of times. It’s a counter controlled loop.

The syntax of the loop is as follows:
for (<initialization>; <loop condition>; <increment expression>)

<loop body>

initialization statement executes once before the loop begins. The <initialization> •	
section can also be a comma-separated list of expression statements.

test expression. As long as the expression is true, the loop will continue. If this •	
expression is evaluated as false the first time, the loop will never be executed.

Increment(Update) expression that automatically executes after each repetition of the •	
loop body.

All the sections in the for-header are optional. Any one of them can be left empty, but •	
the two semicolons are mandatory.

The following program explains the for statement.
public class ProgramFor {

public static void main(String[] args) {

System.out.println(“Printing Numbers from 1 to 10”);

for (int count = 1; count <= 10; count++) {

System.out.println(count);

}

}

}

transfer statements
Transfer statements are used to transfer the flow of execution from one statement to an-

other.

continue statement
A continue statement stops the current iteration of a loop (while, do or for) and causes

execution to resume at the top of the nearest enclosing loop. The continue statement can be
used when you do not want to execute the remaining statements in the loop, but you do not
want to exit the loop itself.

The syntax of the continue statement is
continue; // the unlabeled form

continue <label>; // the labeled form

It is possible to use a loop with a label and then use the label in the continue statement.
The label name is optional, and is usually only used when you wish to return to the outermost
loop in a series of nested loops.

The following program explains the continue statement.
public class ProgramContinue

{

public static void main(String[] args) {

System.out.println(“Odd Numbers”);

for (int i = 1; i <= 10; ++i) {

if (i % 2 == 0)

continue;

System.out.println(i + “\t”);

}

}

}

break statement
The break statement terminates the enclosing loop (for, while, do or switch statement).

Break statement can be used when we want to jump immediately to the statement following
the enclosing control structure. As continue statement, can also provide a loop with a label,
and then use the label in break statement. The label name is optional, and is usually only used
when you wish to terminate the outermost loop in a series of nested loops.

The Syntax for break statement is as shown below;

break; // the unlabeled form

break <label>; // the labeled form

The following program explains the break statement.

public class ProgramBreak {

public static void main(String[] args) {

System.out.println(“Numbers 1 - 10”);

for (int i = 1;; ++i) {

if (i == 11)

break;

// Rest of loop body skipped when i is even

System.out.println(i + “\t”);

}

}

}

The transferred statements such as try-catch-finally, throw will be explained in the later
chapters.

1.15 defining cLasses in java
A class is an entity that determines how an object will behave and what the object will

contain. A class is the basic building block of an object-oriented language such as Java. It
is acting as a template that describes the data and behavior associated with instances of that
class.

When you instantiate a class means creating an object. The class contains set of variables
and methods.

The data associated with a class or object is stored in variables; the behavior associated
with a class or object is implemented with methods. A class is a blueprint from which indi-
vidual objects are created.

class MyClass {

 // field,

 //constructor, and

 // method declarations

}

Example:

class Myclass{

 public static void main(String[] args)

 {

 System.out.println(“Hello World!”); //Display the string.

 }

}

The keyword class begins the class definition for a class named name. The variables and
methods of the class are embraced by the curly brackets that begin and end the class definition
block. The “Hello World” application has no variables and has a single method named main.

In Java, the simplest form of a class definition is

class name {

 . . .

}

in general, class declarations can include these components, in order:
Modifiers1. : A class can be public or has default access.

Class name:2. The name should begin with a initial letter.

Superclass(if any):3. The name of the class’s parent (superclass), if any, preceded by
the keyword extends. A class can only extend (subclass) one parent.

Interfaces(if any):4. A comma-separated list of interfaces implemented by the class,
if any, preceded by the keyword implements. A class can implement more than one
interface.

Body:5. The class body surrounded by braces, { }.

1.16 cOnstructOrs
Every class has a constructor. If the constructor is not defined in the class, the Java com-

piler builds a default constructor for that class. While a new object is created, at least one
constructor will be invoked. The main rule of constructors is that they should have the same
name as the class. A class can have more than one constructor.

Constructors are used for initializing new objects. Fields are variables that provide the
state of the class and its objects, and methods are used to implement the behavior of the class
and its objects.

Rules for writing Constructor

Constructor(s) of a class must have same name as the class name in which it resides.•	

A constructor in Java cannot be abstract, final, static and synchronized.•	

Access modifiers can be used in constructor declaration to control its access i.e which •	
other class can call the constructor.

Following is an example of a constructor −
Example

public class myclass {

public myclass() { // Constructor

}

public myclass(String name) {

// This constructor has one parameter, name.

}

}

types of constructors
There are two type of constructor in Java:

1. no-argument constructor:
A constructor that has no parameter is known as default constructor.

If the constructor is not defined in a class, then compiler creates default con-
structor (with no arguments) for the class. If we write a constructor with ar-
guments or no-argument then compiler does not create default constructor.
Default constructor provides the default values to the object like 0, null etc. depending on the
type.

// Java Program to illustrate calling a no-argument constructor
import java.io.*;

class myclass

{

 int num;

String name;

 // this would be invoked while object of that class created.

 myclass()

 {

 System.out.println(“Constructor called”);

 }

}

 class myclassmain

{

 public static void main (String[] args)

 {

 // this would invoke default constructor.

 myclass m1 = new myclass();

 // Default constructor provides the default values to the object like 0, null

 System.out.println(m1.num);

 System.out.println(m1.name);

 }

}

2. Parameterized constructor
A constructor that has parameters is known as parameterized constructor. If we want to

initialize fields of the class with your own values, then use parameterized constructor.

// Java Program to illustrate calling of parameterized constructor.
import java.io.*;

 class myclass

{

 // data members of the class.

 String name;

 int num;

 // contructor with arguments.

 myclass(String name, int n)

 {

 this.name = name;

 this.num = n;

 }

}

 class myclassmain{

 public static void main (String[] args)

 {

 // this would invoke parameterized constructor.

 myclass m1 = new myclass(“Java”, 2017);

 System.out.println(“Name :” + m1.name + “ num :” + m1.num);

 }

 }

There are no “return value” statements in constructor, but constructor returns current class
instance. We can write ‘return’ inside a constructor.

1.17 cOnstructOr OverLOading
Like methods, we can overload constructors for creating objects in different ways.

Compiler differentiates constructors on the basis of numbers of parameters, types of the
parameters and order of the parameters.

// Java Program to illustrate constructor overloading
import java.io.*;

class myclass

{

 // constructor with one argument

 myclass (String name)

 {

 System.out.println(“Constructor with one “ + “argument - String : “ + name);

 }

 // constructor with two arguments

 myclass (String name, int id)

 {

 System.out.print(“Constructor with two arguments : “ +” String and Integer : “ + name
+ “ “+ id);

 }

 // Constructor with one argument but with different type than previous.

 myclass (long num)

 {

 System.out.println(“Constructor with one argument : “ +”Long : “ + num);

 }

}

 class myclassmain

{

 public static void main(String[] args)

 {

 myclass m1 = new myclass (“JAVA”);

 myclass m2 = new myclass (“Python”, 2017);

 myclass m3 = new myclass(3261567);

 }

}

Constructors are different from methods in Java
Constructor(s) must have the same name as the class within which it defined while it •	
is not necessary for the method in java.

Constructor(s) do not any return type while method(s) have the return type or •	 void if
does not return any value.

Constructor is called only once at the time of Object creation while method(s) can be •	
called any numbers of time.

creating an Object

The class provides the blueprints for objects. The objects are the instances of the class. In
Java, the new keyword is used to create new objects.

There are three steps when creating an object from a class −

Declaration•	 − A variable declaration with a variable name with an object type.

Instantiation•	 − The ‘new’ keyword is used to create the object.

Initialization•	 − The ‘new’ keyword is followed by a call to a constructor. This call
initializes the new object.

1.18 metHOds in java
A method is a collection of statement that performs specific task. In Java, each method is

a part of a class and they define the behavior of that class. In Java, method is a jargon used
for method.

advantages of methods
Program development and debugging are easier•	

Increases code sharing and code reusability•	

Increases program readability•	

It makes program modular and easy to understanding•	

It shortens the program length by reducing code redundancy•	

types of methods
There are two types of methods in Java programming:

Standard library methods (built-in methods or predefined methods)•	

User defined methods•	

standard library methods
The standard library methods are built-in methods in Java programming to handle tasks

such as mathematical computations, I/O processing, graphics, string handling etc. These

methods are already defined and come along with Java class libraries, organized in packages.
In order to use built-in methods, we must import the corresponding packages. Some of library
methods are listed below.

Packages Library methods descriptions
java.lang.Math

All maths related methods
are defined in this class

acos()

exp()

abs()

 log()

sqrt()

pow()

Computes arc cosine of the argument

Computes the e raised to given power

Computes absolute value of argument

Computes natural logarithm

Computes square root of the argument

Computes the number raised to given
power

java.lang.String

All string related methods
are defined in this class

charAt()

concat()

compareTo()

indexOf()

toUpperCase()

Returns the char value at the specified
index.

Concatenates two string

Compares two string

Returns the index of the first occurrence
of the given character

converts all of the characters in the String
to upper case

java.awt

contains classes for
graphics

add()

setSize()

setLayout()

setVisible()

inserts a component

set the size of the component

defines the layout manager

changes the visibility of the component

Example:
Program to compute square root of a given number using built-in method.

public class MathEx {

 public static void main(String[] args) {

 System.out.print(“Square root of 14 is: “ + Math.sqrt(14));

 }

}

Sample Output:
Square root of 14 is: 3.7416573867739413

user-defined methods
The methods created by user are called user defined methods.

Every method has the following.

Method declaration (also called as method signature or method prototype)•	

Method definition (body of the method)•	

Method call (invoke/activate the method)•	

method declaration
The syntax of method declaration is:

Syntax:
return_type method_name(parameter_list);

Here, the return_type specifies the data type of the value returned by method. It will be
void if the method returns nothing. method_name indicates the unique name assigned to the
method. parameter_list specifies the list of values accepted by the method.

method Definition
Method definition provides the actual body of the method. The instructions to complete a

specific task are written in method definition. The syntax of method is as follows:

Syntax:

 modifier return_type method_name(parameter_list){

 // body of the method

 }

Here,

Modifier – Defines the access type of the method i.e accessibility re-
gion of method in the application

return_type – Data type of the value returned by the method or void if
method returns nothing

method_name – Unique name to identify the method. The name must follow
the rules of identifier

parameter_list – List of input parameters separated by comma. It must be
like

datatype parameter1,datatype parameter2,……

List will be empty () in case of no input parameters.
method body – block of code enclosed within { and } braces to perform

specific task

The first line of the method definition must match exactly with the method prototype. A
method cannot be defined inside another method.

method call
A method gets executed only when it is called. The syntax for method call is.

syntax:

 method_name(parameters);

When a method is called, the program control transfers to the method definition where
the actual code gets executed and returns back to the calling point. The number and type of
parameters passed in method call should match exactly with the parameter list mentioned in
method prototype.

Example:

body of the method

modifier

return type

method name

Parameter list

method call

method return

class Addition{

 public int add(int a,int b){

 return(a+b);

 }

}

class Main{

 public static void main(String args[]){

 int sum=0,a=1,b=12;

 Addition obj=new Addition();

 sum=obj.add(a,b);

 System.out.println(“Sum:”+sum);

 }

}

Sample Output:

Sum:13

memory allocation for methods calls
Method calls are implemented using stack. When a method is called, the parameters

passed in the call, local variables defined inside method, and return value of the method
are stored in stack frame. The allocated stack frame gets deleted automatically at the end of
method execution.

types of user-defined methods
The methods in C are classified based on data flow between calling method and called

method. They are:

Method with no arguments and no return value•	

Method with no arguments and a return value•	

Method with arguments and no return value•	

Method with arguments and a return value.•	

method with no arguments and no return value
In this type of method, no value is passed in between calling method and called method.

Here, when the method is called program control transfers to the called method, executes the
method, and return back to the calling method.

Example:
Program to compute addition of two numbers (no argument and no return value)

public class Main{

 public void add(){ // method definition with no arguments and no return value

 int a=10,b=20;

 System.out.println(“Sum:”+(a+b));

 }

 public static void main(String[] args) {

 Main obj=new Main();

 obj.add(); // method call with no arguments

 }

}

Sample Output:
Sum:30

method with no arguments and a return value
In this type of method, no value is passed from calling method to called method but a

value is returned from called method to calling method.

Example:
Program to compute addition of two numbers (no argument and with return value)

public class Main {
 public int add(){ // method definition with no arguments and with return value
 int a=10,b=20;
 return(a+b);
 }
 public static void main(String[] args) {
 int sum=0;
 Main obj=new Main();

 sum=obj.add();
 /* method call with no arguments. The value returned

from the method is assigned to variable sum */

 System.out.println(“Sum:”+sum);
 }
}

Sample Output:
Sum:30

method with arguments and no return value
In this type of method, parameters are passed from calling method to called method but

no value is returned from called method to calling method.

Example:
Program to compute addition of two numbers (with argument and without return value)

public class Main {
 public void add(int x,int y){ // method definition with arguments and no return value
 System.out.println(“Sum:”+(x+y));
 }
 public static void main(String[] args) {
 int a=10,b=20;
 Main obj=new Main();
 obj.add(a,b); // method call with arguments
 }
}

Sample Output:
Sum:30

method with arguments and a return value.
In this type of method, there is data transfer in between calling method and called method.

Here, when the method is called program control transfers to the called method with argu-
ments, executes the method, and return the value back to the calling method.

Example:
Program to compute addition of two numbers (with argument and return value)

public class Main {

 public int add(int x,int y){ // function definition with arguments and return value

 return(x+y); //return value

 }

 public static void main(String[] args) {

 int a=10,b=20;

 Main obj=new Main();
 /* method call with arguments. The value returned from

the method is displayed within main() */

 System.out.println(“Sum:”+obj.add(a,b));

 }

}

Sample Output:
Sum:30

1.19 Parameter Passing in java
The commonly available parameter passing methods are:

Pass by value•	

Pass by reference•	

Pass by value
In pass by value, the value passed to the method is copied into the local parameter

and any change made inside the method only affects the local copy has no effect on the
original copy. In Java, parameters are always passed by value. All the scalar variables (of
type int, long, short, float, double, byte, char, Boolean) are always passed to the methods by
value. Only the non-scalar variables like Object, Array, String are passed by reference.

Note:
Scalar variables are singular data with one value; Non scalar variables are data with mul-

tiple values.

Example:
Pass by value

class Swapper{

int a;

int b;

Swapper(int x, int y) // constructor to initialize variables

{

a = x;

b = y;

}

void swap(int x, int y) // method to interchange values

{

/* only the local copy x, y gets swapped. The original object
value a, b remains unchanged*/

 int temp;

 temp = x;

 x=y;

 y=temp;

 }

}

class Main{

 public static void main(String[] args){

 Swapper obj = new Swapper(10, 20); // create object

 System.out.println(“Before swapping: a=”+obj.a+” b=”+obj.b);

 obj.swap(obj.a,obj.b); // call the method by passing class object as parameter

 System.out.println(“Before swapping: a=”+obj.a+” b=”+obj.b);

 }

}

Sample Output:
Before swapping: a=10 b=20

After swapping: a=10 b=20

Here, to call method swap() first create an object for class Swapper. Then the method is
called by passing object values a and b as input parameters. As these values are scalar, the
parameters are passed using pass by value technique. So the changes carried out inside the
method are not reflected in original value of a and b.

Pass by reference
In pass-by-reference, reference (address) of the actual parameters is passed to the local

parameters in the method definition. So, the changes performed on local parameters are re-
flected on the actual parameters.

Example:

class Swapper{

 int a;

 int b;

 Swapper(int x, int y) // constructor to initialize variables

 {

 a = x;

 b = y;

 }

 void swap(Swapper ref) // method to interchange values

 {

/* Object is passed by reference. So the original object value
a, b gets changed*/

 int temp;

 temp = ref.a;

 ref.a = ref.b;

 ref.b = temp;

 }

}

class PassByRef{

 public static void main(String[] args){

 Swapper obj = new Swapper(10, 20); // create object

 System.out.println(“Before swapping: a=”+obj.a+” b=”+obj.b);

 obj.swap(obj); // call the method by passing class object as parameter

 System.out.println(“After swapping: a=”+obj.a+” b=”+obj.b);

 }

}
Sample Output:

Before swapping: a=10 b=20

After swapping: a=20 b=10

In this example, the class object is passed as parameter using pass by reference technique.
So the method refers the original value of a and b.

method using object as parameter and returning objects
A method can have object as input parameter (see pass by reference) and can return a class

type object.

Example:

class Addition{

 int no;

 Addition(){}

 Addition(int x){

 no=x;

 }

 public Addition display(Addition oa){

 Addition tmp=new Addition();
/*method with same class object as input parameter &

return value*/

 tmp.no=no+oa.no;

 return(tmp);

 }

}

class Main{

 public static void main(String args[]){

 Addition a1=new Addition(10);

 Addition a2=new Addition(10);

 Addition a3;

 a3=a1.display(a2); // method is invoked using the object a1 with input parameter a2

 System.out.println(“a1.no=”+a1.no+” a2.no=”+a2.no+” a3.no=”+a3.no);

 }

}

Sample Output:
a1.no=10 a2.no=10 a3.no=20

Here, display() accepts class Addition object a2 as input parameter. It also return same
class object as output. This method adds the value of invoking object a1 and input parameter
a2. The summation result is stored in temporary object tmp inside the method. The value re-
turned by the method is received using object a3 inside main().

1.20 metHOd OverLOading
Method overloading is the process of having multiple methods with same name that dif-

fers in parameter list. The number and the data type of parameters must differ in overloaded
methods. It is one of the ways to implement polymorphism in Java. When a method is called,
the overloaded method whose parameters match with the arguments in the call gets invoked.

Note: Overloaded methods are differentiable only based on parameter list and not on their
return type.

Example:

Program for addition using Method Overloading
class MethodOverload{

 void add(){

 System.out.println(“No parameters”);

 }

 void add(int a,int b){ // overloaded add() for two integer parameter

 System.out.println(“Sum:”+(a+b));

 }

 void add(int a,int b,int c){ // overloaded add() for three integer parameter

 System.out.println(“Sum:”+(a+b+c));

 }

 void add(double a,double b){ // overloaded add() for two double parameter

 System.out.println(“Sum:”+(a+b));

 }

}

public class Main {

 public static void main(String[] args) {

 MethodOverload obj=new MethodOverload();

 obj.add(); // call all versions of add()

 obj.add(1,2);

 obj.add(1,2,3);

 obj.add(12.3,23.4);

 }

}

Sample Output:
No parameters

Sum:3

Sum:6

Sum:35.7

Here, add() is overloaded four times. The first version takes no parameters, second takes
two integers, third takes three integers and fourth accepts two double parameter.

1.21 access sPecifiers
Access specifiers or access modifiers in java specifies accessibility (scope) of a data mem-

ber, method, constructor or class. It determines whether a data or method in a class can be
used or invoked by other class or subclass.

types of access Specifiers
There are 4 types of java access specifiers:

Private1.

Default (no speciifer)2.

Protected3.

Public4.

The details about accessibility level for access specifiers are shown in following table.

access modifiers default Private Protected Public
Accessible inside the class Yes Yes Yes Yes
Accessible within the subclass
inside the same package Yes No Yes Yes

Accessible outside the package No No No Yes
Accessible within the subclass
outside the package No No Yes Yes

Private access modifier
Private data fields and methods are accessible only inside the class where it is declared i.e

accessible only by same class members. It provides low level of accessibility. Encapsulation
and data hiding can be achieved using private specifier.

Example:

Role of private specifier

class PrivateEx{

 private int x; // private data

 public int y; // public data

 private PrivateEx(){} // private constructor

 public PrivateEx(int a,int b){ // public constructor

 x=a;

 y=b;

 }

}

public class Main {

 public static void main(String[] args) {

 PrivateEx obj1=new PrivateEx(); // Error: private constructor cannot be applied

 PrivateEx obj2=new PrivateEx(10,20); // public constructor can be applied to obj2

 System.out.println(obj2.y); // public data y is accessible by a non-member

 System.out.println(obj2.x); //Error: x has private access in PrivateEx

 }

}

In this example, we have created two classes PrivateEx and Main. A class contains private
data member, private constructor and public method. We are accessing these private members
from outside the class, so there is compile time error.

Default access modifier

If the specifier is mentioned, then it is treated as default. There is no default specifier
keyword. Using default specifier we can access class, method, or field which belongs to same
package, but not from outside this package.

Example:

Role of default specifier

class DefaultEx{

 int y=10; // default data

}

public class Main {

 public static void main(String[] args) {

 DefaultEx obj=new DefaultEx();

 System.out.println(obj.y); // default data y is accessible outside the class

 }

}

Sample Output:

10

In the above example, the scope of class DefaultEx and its data y is default. So it can be
accessible within the same package and cannot be accessed from outside the package.

Protected access modifier

Protected methods and fields are accessible within same class, subclass inside same pack-
age and subclass in other package (through inheritance). It cannot be applicable to class and
interfaces.

Example:

Role of protected specifier

class Base{

 protected void show(){

 System.out.println(“In Base”);

 }

}

public class Main extends Base{

 public static void main(String[] args) {

 Main obj=new Main();

 obj.show();

 }

}

Sample Output:

In Base

In this example, show() of class Base is declared as protected, so it can be accessed from
outside the class only through inheritance. Chapter 2 explains the concept of inheritance in
detail.

Public access modifier

The public access specifier has highest level of accessibility. Methods, class, and fields
declared as public are accessible by any class in the same package or in other package.

Example:

Role of public specifier

class PublicEx{

 public int no=10;

}

public class Main{

 public static void main(String[] args) {

 PublicEx obj=new PublicEx();

 System.out.println(obj.no);

 }

}

Sample Output:
10

In this example, public data no is accessible both by member and non-member of the
class.

1.22 static KeyWOrd
The static keyword indicates that the member belongs to the class instead of a specific

instance. It is used to create class variable and mainly used for memory management. The
static keyword can be used with:

Variable (static variable or class variable)•	

Method (static method or class method)•	

Block (static block)•	

Nested class (static class)•	

import (static import)•	

static variable
Variable declared with keyword static is a static variable. It is a class level variable com-

monly shared by all objects of the class.

Memory allocation for such variables only happens once when the class is loaded in •	
the memory.

scope of the static variable is class scope (accessible only inside the class)•	

lifetime is global (memory is assigned till the class is removed by JVM).•	

Automatically initialized to 0.•	

It is accessible using ClassName.variablename•	

Static variables can be accessed directly in static and non-static methods.•	

Example :

Without static With static

class staticex{

 int no=10;

 Staticex(){

 System.out.println(no);

 no++;

 }

}

public class main{

 public static void main(String[] args)

{

 Staticex obj1=new Staticex();

 Staticex obj2=new Staticex();

 Staticex obj3=new Staticex();

 }

}

Sample Output:

10

10

10

class staticex{

 static int no=10;

 Staticex(){

 System.out.println(no);

 no++;

 }

}

public class main{

 public static void main(String[] args)

{

 Staticex obj1=new Staticex();

 Staticex obj2=new Staticex();

 Staticex obj3=new Staticex();

 }

}

Sample Output:

10

11

12

static method
The method declared with static keyword is known as static method. main() is most com-

mon static method.

It belongs to the class and not to object of a class.•	

A static method can directly access only static variables of class and directly invoke •	
only static methods of the class.

Static methods cannot access non-static members(instance variables or instance •	
methods) of the class

Static method cant access this and super references•	

It can be called through the name of class without creating any instance of that class. •	
For example, ClassName.methodName()

Example:
class StaticEx{
 static int x;
 int y=10;
 static void display(){
 System.out.println(“Static Method “+x); // static method accessing static variable
 }
 public void show(){
 System.out.println(“Non static method “+y);
 System.out.println(“Non static method “+x); // non-static method can access static variable

 }
}

public class Main

{

 public static void main(String[] args) {

 StaticEx obj=new StaticEx();

 StaticEx.display(); // static method invoked without using object

 obj.show();

 }

}

Sample Output:
Static Method 0

Non static method 10

Non static method 0

In this example, class StaticEx consists of a static variable x and static method display().
The static method cannot access a non-static variable. If you try to access y inside static
method display(), it will result in compilation error.

 static void display(){
 /*non-static variable y cannot be referred from a

static context*/

 System.out.println(“Static Method “+x+y);

 }

static block
A static block is a block of code enclosed in braces, preceded by the keyword static.

The statements within the static block are first executed automatically before main •	
when the class is loaded into JVM.

A class can have any number of static blocks.•	

JVM combines all the static blocks in a class as single block and executes them.•	

Static methods can be invoked from the static block and they will be executed as and •	
when the static block gets executed.

Syntax:
 static{

 …………….
 }

Example:
class StaticBlockEx{

 StaticBlockEx (){

 System.out.println(“Constructor”);

 }

 static {

 System.out.println(“First static block”);

 }

 static void show(){

 System.out.println(“Inside method”);

 }

 static{

 System.out.println(“Second static block”);

 show();

 }

 public static void main(String[] args) {

 StaticBlockEx obj=new StaticBlockEx ();

 }

 static{

 System.out.println(“Static in main”);

 }

}

Sample Output:
First static block

Second static block

Inside method

Static in main

Constructor

Nested class (static class)
Nested class is a class declared inside another class. The inner class must be a static class

declared using keyword static. The static nested class can refer directly to static members of
the enclosing classes, even if those members are private.

Syntax:
 class OuterClass{

 ……..

 static class InnerClass{

 ……….

 }

 }

We can create object for static nested class directly without creating object for outer class.
For example:

OuterClassName.InnerClassName=new OuterClassName.InnerClassName();

Example:
class Outer{
 static int x=10;
 static class Inner{
 int y=20;
 public void show(){
 System.out.println(x+y); // nested class accessing its own data & outer

class static data
 }
 }
}
class Main{
 public static void main(String args[]){
 Outer.Inner obj=new Outer.Inner(); // Creating object for static nested class
 obj.show();
 }
}

Sample Output:
30

static import
The static import allows the programmer to access any static members of imported class

directly. There is no need to qualify it by its name.

Syntax:
Import static package_name;

Advantage:
Less coding is required if you have access any static member of a class oftenly.•	

Disadvantage:
Overuse of static import makes program unreadable and unmaintable.•	

Example:
import static java.lang.System.*;

class StaticImportEx{

 public static void main(String args[]){

 out.println(“Static Import Example”); //Now no need of System.out

}

}

Sample Output:
Static Import Example

1.23 arrays
Array is a collection of elements of similar data type stored in contiguous memory loca-

tion. The array size is fixed i.e we can’t increase/decrease its size at runtime. It is index based
and the first element is stored at 0th index.

Advantages of Array
Code Optimization: Multiple values can be stored under common name. Date retrieval •	
or sorting is an easy process.

Random access: Data at any location can be retrieved randomly using the index.•	

Disadvantages of Array
Inefficient memory usage: Array is static. It is not resizable at runtime based on number •	
of user’s input. To overcome this limitation, Java introduce collection concept.

 types of array
There are two types of array.

One Dimensional Array•	

Multidimensional Array•	

One dimensional array
Declaring Array Variables

The syntax for declaring an array variable is

Syntax:

 dataType[] arrayName; //preferred way

 Or

 dataType arrayName [];

Here datatype can be a primitive data type like: int, char, Double, byte etc. arrayName is
an identifier.

Example:
 int[] a;

instantiation of an array
Array can be created using the new keyword. To allocate memory for array elements

we must mention the array size. The size of an array must be specified by an int value and
not long or short. The default initial value of elements of an array is 0 for numeric types
and false for boolean.

Syntax:

 arrayName=new datatype[size];

 Or

dataType[] arrayName=new datatype[size]; //declaration and instantiation

Example:
 int[] a=new int[5]; //defining an integer array for 5 elements

Alternatively, we can create and initialize array using following syntax.

Syntax:

 dataType[] arrayName=new datatype[]{list of values separated by comma};

 Or

 dataType[] arrayName={ list of values separated by comma};

Example:
 int[] a={12,13,14};

 int[] a=new int[]{12,13,14};

The built-in length property is used to determine length of the array i.e. number of ele-
ments present in an array.

accessing array elements
The array elements can be accessed by using indices. The index starts from 0 and ends at

(array size-1). Each element in an array can be accessed using for loop.

Example:
Program to access array elements.

class Main{

 public static void main(String args[]){

 int a[]=new int[]{10,20,30,40};//declaration and initialization

 //printing array

 for(int i=0;i<a.length;i++)//length is the property of array

 System.out.println(a[i]);

 }

}

Sample Output:
10

20

30

40

the for-each loop
The for-each loop is used to traverse the complete array sequentially without using an

index variable. It’s commonly used to iterate over an array or a Collections class (eg, Array-
List).

Syntax:
for(type var:arrayName){

 Statements using var;

}

Example:
Program to calculate sum of array elements.

class Main{

 public static void main(String args[]){

 int a[]=new int[]{10,20,30,40};//declaration and initialization

 int sum=0;

 for(int i:a) // calculate sum of array elements

 sum+=i;

 System.out.println(“Sum:”+sum);

 }

}

Sample Output:
Sum:100

multidimensional arrays
Multidimensional arrays are arrays of arrays with each element of the array holding the

reference of other array. These are also known as Jagged Arrays.

Syntax:
dataType[][] arrayName=new datatype[rowsize][columnnsize]; // 2 dimensional array

dataType[][][] arrayName=new datatype[][][]; // 3 dimensional array

Example:

int[][] a=new int[3][4];

Example:
Program to access 2D array elements

class TwoDimEx

{

 public static void main(String args[])

 {

 // declaring and initializing 2D array

 int arr[][] = { {1,1,12},{2,16,1},{12,42,2} };

 // printing 2D array

 for (int i=0; i< arr.length; i++)

 {

 for (int j=0; j < arr[i].length ; j++)

 System.out.print(arr[i][j] + “ “);

 System.out.println();

 }

 }

}

Sample Output:
1 1 12

2 16 1

12 42 2

jagged array
Jagged array is an array of arrays with different row size i.e. with different dimensions.

Example:
class Main {

 public static void main(String[] args) {

 int[][] a = {

 {11, 3, 43},

 {3, 5, 8, 1},

 {9},

 };

 System.out.println(“Length of row 1: “ + a[0].length);

 System.out.println(“Length of row 2: “ + a[1].length);

 System.out.println(“Length of row 3: “ + a[2].length);

 }

}

Sample Output:
Length of row 1: 3

Length of row 2: 4

Length of row 3: 1

Passing an array to a method
An array can be passed as parameter to method.

Example:
Program to find minimum element in an array

class Main{

 static void min(int a[]){

 int min=a[0];

 for(int i=1;i<a.length;i++)

 if(min>a[i])

 min=a[i];

 System.out.println(“Minimum:”+min);

 }

 public static void main(String args[]){

 int a[]={12,13,14,5};

 min(a);//passing array to method

 }

}

Sample Output:
Minimum:5

returning an array from a method
A method may also return an array.

Example:
Program to sort array elements in ascending order.

class Main{

 static int[] sortArray(int a[]){

 int tmp;

 for(int i=0;i<a.length-1;i++) { //code for sorting

 for(int j=i+1;j<=a.length-1;j++) {

 if(a[i]>a[j]){

 tmp=a[i];

 a[i]=a[j];

 a[j]=tmp;

 }

 }

 }

 return(a); // returning array

 }

 public static void main(String args[]){

 int a[]={33,43,24,5};

 a=sortArray(a);//passing array to method

Inheritance and Interfaces 2.1

INHERITANCE AND INTERFACES

2.1 InherItance
Inheritance is the mechanism in java by which one class is allow to inherit the features

(fields and methods) of another class. It is process of deriving a new class from an existing
class. A class that is inherited is called a superclass and the class that does the inheriting is
called a subclass. Inheritance represents the IS-A relationship, also known as parent-child re-
lationship. The keyword used for inheritance is extends.

Syntax:
 class Subclass-name extends Superclass-name

 {

 //methods and fields

 }

Here, the extends keyword indicates that we are creating a new class that derives from an
existing class.

Note: The constructors of the superclass are never inherited by the subclass

advantages of Inheritance:
Code reusability - public methods of base class can be reused in derived classes•	

Data hiding – private data of base class cannot be altered by derived class•	

Overriding--With inheritance, we will be able to override the methods of the base •	
class in the derived class

Example:
// Create a superclass.

class BaseClass{

 int a=10,b=20;

 public void add(){

 System.out.println(“Sum:”+(a+b));

UNIT -2

 }

}

// Create a subclass by extending class BaseClass.

public class Main extends BaseClass

{

 public void sub(){

 System.out.println(“Difference:”+(a-b));

 }

 public static void main(String[] args) {

 Main obj=new Main();

/*The subclass has access to all public members of its superclass*/

 obj.add();

 obj.sub();

 }

}

Sample Output:
Sum:30

Difference:-10

In this example, Main is the subclass and BaseClass is the superclass. Main object can
access the field of own class as well as of BaseClass class i.e. code reusability.

types of inheritance
Single Inheritance :

In single inheritance, a subclass inherit the features of one superclass.

example:
class Shape{

 int a=10,b=20;

}

class Rectangle extends Shape{

 public void rectArea(){

 System.out.println(“Rectangle Area:”+(a*b));

 }

}

public class Main

{

 public static void main(String[] args) {

 Rectangle obj=new Rectangle();

 obj.rectArea();

 }

}

Multilevel Inheritance:
In Multilevel Inheritance, a derived class will be inheriting a base class and as well as the

derived class also act as the base class to other class i.e. a derived class in turn acts as a base
class for another class.

Example:
class Numbers{

 int a=10,b=20;

}

class Add2 extends Numbers{

 int c=30;

 public void sum2(){

 System.out.println(“Sum of 2 nos.:”+(a+b));

 }

}

class Add3 extends Add2{

 public void sum3(){

 System.out.println(“Sum of 3 nos.:”+(a+b+c));

 }

}

public class Main

{

 public static void main(String[] args) {

 Add3 obj=new Add3();

 obj.sum2();

 obj.sum3();

 }

}

Sample Output:
Sum of 2 nos.:30

Sum of 3 nos.:60

hierarchical Inheritance:

In Hierarchical Inheritance, one class serves as a superclass (base class) for more than
one sub class.

Example:
class Shape{

 int a=10,b=20;

}

class Rectangle extends Shape{

 public void rectArea(){

 System.out.println(“Rectangle Area:”+(a*b));

 }

}

class Triangle extends Shape{

 public void triArea(){

 System.out.println(“Triangle Area:”+(0.5*a*b));

 }

}

public class Main

{

 public static void main(String[] args) {

 Rectangle obj=new Rectangle();

 obj.rectArea();

 Triangle obj1=new Triangle();

 obj1.triArea();

 }

}

Sample Output:
Rectangle Area:200

Triangle Area:100.0

Multiple inheritance
Java does not allow multiple inheritance:

To reduce the complexity and simplify the language•	

To avoid the ambiguity caused by multiple inheritance•	

For example, Consider a class C derived from two base classes A and B. Class C inherits
A and B features. If A and B have a method with same signature, there will be ambiguity to
call method of A or B class. It will result in compile time error.

class A{

void msg(){System.out.println(“Class A”);}

}

class B{

void msg(){System.out.println(“Class B “);}

}

class C extends A,B{//suppose if it were

 Public Static void main(String args[]){

 C obj=new C();

 obj.msg();//Now which msg() method would be invoked?

}

}

Sample Output:
 Compile time error

Direct implementation of multiple inheritance is not allowed in Java. But it is achievable
using Interfaces. The concept about interface is discussed in chapter.2.7.

access control in Inheritance
The following rules for inherited methods are enforced −

Variables declared public or protected in a superclass are inheritable in subclasses.•	

Variables or Methods declared private in a superclass are not inherited at all.•	

Methods declared public in a superclass also must be public in all subclasses.•	

Methods declared protected in a superclass must either be protected or public in •	
subclasses; they cannot be private.

Example:
// Create a superclass

class A{

 int x; // default specifier

 private int y; // private to A

 public void set_xy(int a,int b){

 x=a;

 y=b;

 }

}

// A’s y is not accessible here.

class B extends A{

 public void add(){

 System.out.println(“Sum:”+(x+y)); //Error: y has private access in A – not inheritable

 }

}

class Main{

 public static void main(String args[]){

 B obj=new B();

 obj.set_xy(10,20);

 obj.add();

 }

}

In this example since y is declared as private, it is only accessible by its own class mem-
bers. Subclasses have no access to it.

2.2 UsIng sUper
The super keyword refers to immediate parent class object. Whenever you create the in-

stance of subclass, an instance of parent class is created implicitly which is referred by super
reference variable.

It an be used to refer immediate parent class instance variable when both parent and •	
child class have member with same name

It can be used to invoke immediate parent class method when child class has overridden •	
that method.

super() can be used to invoke immediate parent class constructor.•	

Use of super with variables:
When both parent and child class have member with same name, we can use super key-

word to access mamber of parent class.

Example:
class SuperCls

{

 int x = 20;

}

 /* sub class SubCls extending SuperCls */

class SubCls extends SuperCls

{

 int x = 80;

 void display()

 {

 System.out.println(“Super Class x: “ + super.x); //print x of super class

 System.out.println(“Sub Class x: “ + x); //print x of subclass

 }

}

 /* Driver program to test */

class Main

{

 public static void main(String[] args)

 {

 SubCls obj = new SubCls();

 obj.display();

 }

}

sample Output:
Super Class x: 20

Sub Class x: 80

In the above example, both base class and subclass have a member x. We could access x
of base class in sublcass using super keyword.

Use of super with methods:
The super keyword can also be used to invoke parent class method. It should be used if

subclass contains the same method as parent class (Method Overriding).

class SuperCls
{
 int x = 20;
 void display(){ //display() in super class
 System.out.println(“Super Class x: “ + x);
 }
}
 /* sub class SubCls extending SuperCls */
class SubCls extends SuperCls
{
 int x = 80;
 void display() //display() redefined in sub class – method overriding
 {
 System.out.println(“Sub Class x: “ + x);
 super.display(); // invoke super class display()
 }
}
 /* Driver program to test */
class Main
{
 public static void main(String[] args)
 {
 SubCls obj = new SubCls();
 obj.display();
 }
}

Sample Output:
Sub Class x: 80

Super Class x: 20

In the above example, if we only call method display() then, the display() of sub class gets
invoked. But with the use of super keyword, display() of superclass could also be invoked.

Use of super with constructors:
The super keyword can also be used to invoke the parent class constructor.

Syntax:

 super();

super() if present, must always be the first statement executed inside a subclass •	
constructor.

When we invoke a super() statement from within a subclass constructor, we are •	
invoking the immediate super class constructor

Example:
class SuperCls

{

 SuperCls(){

 System.out.println(“In Super Constructor”);

 }

}

 /* sub class SubCls extending SuperCls */

class SubCls extends SuperCls

{

 SubCls(){

 super();

 System.out.println(“In Sub Constructor”);

 }

}

 /* Driver program to test */

class Main

{

 public static void main(String[] args)

 {

 SubCls obj = new SubCls();

 }

}

Sample Output:
In Super Constructor

In Sub Constructor

2.3 Order Of cOnstrUctOr InvOcatIOn
Constructors are invoked in the order of their derivation•	

If a subclass constructor does not explicitly invoke a superclass constructor using •	
super() in the first line, the Java compiler automatically inserts a call to the no-
argument constructor of the superclass. If the superclass does not have a no-argument
constructor, it will generate a compile-time error.

Example:
class A

{

 A(){

 System.out.println(“A’s Constructor”);

 }

}

 /* sub class B extending A */

class B extends A

{

 B(){

 super();

 System.out.println(“B’s Constructor”);

 }

}

/* sub class C extending B */

class C extends B{

 C(){

 super();

 System.out.println(“C’s Constructor”);

 }

}

 /* Driver program to test */

class Main

{

 public static void main(String[] args)

 {

 C obj = new C();

 }

}

Sample Output:
A’s Constructor

B’s Constructor

C’s Constructor

Invoking superclass parameterized constructor
To call parameterized constructor of superclass, we must use the super keyword as shown

below.

Syntax:

 super(value);

Example:

class SuperCls{

 int x;

 SuperCls(int x){

 this.x=x; // this refers to current invoking object

 }

}

class SubCls extends SuperCls{

 int y;

 SubCls(int x,int y){

 super(x); // invoking parameterized constructor of superclass

 this.y=y;

 }

 public void display(){

 System.out.println(“x: “+x+” y: “+y);

 }

}

public class Main

{

 public static void main(String[] args) {

 SubCls obj=new SubCls(10,20);

 obj.display();

 }

}

Sample Output:
x: 10 y: 20

The program contains a superclass and a subclass, where the superclass contains a param-
eterized constructor which accepts a integer value, and we used the super keyword to invoke
the parameterized constructor of the superclass.

2.4 the Object class
The Object class is the parent class of all the classes in java by default (directly or indi-

rectly). The java.lang.Object class is the root of the class hierarchy. Some of the Object class
are Boolean, Math, Number, String etc.

 Object

Boolean

Character Number Math String StringBuffer

Byte

Short Integer Long Float Double

Some of the important methods defined in Object class are listed below.

Object class Methods description
boolean equals(Object) Returns true if two references point to the same object.
String toString() Converts object to String
void notify()

void notifyAll()

void wait()

Used in synchronizing threads

void finalize() Called just before an object is garbage collected

Object clone() Returns a new object that are exactly the same as the current
object

int hashCode() Returns a hash code value for the object.
Example:

public class Test

{

 public static void main(String[] args)

 {

 Test t = new Test();
 /*hashcode is the unique number generated by JVM*/

 System.out.println(t);

 System.out.println(t.toString()); // provides String representation of an Object

 System.out.println(t.hashCode());

 t = null; /*calling garbage collector explicitly to dispose system resources, perform

clean-up activities and minimize memory leaks*/

 System.gc();

 System.out.println(“end”);

 }

 protected void finalize() // finalize() is called just once on an object

 {

 System.out.println(“finalize method called”);

 }

}

Sample Output:
Test@2a139a55
Test@2a139a55
705927765
end

finalize method called

In the above program, the default toString() method for class Object returns a string con-
sisting of the name of the class Test of which the object is an instance, the at-sign character
`@’, and the unsigned hexadecimal representation of the hash code of the object.

2.5 abstract classes and MethOds
abstract class

A class that is declared as abstract is known as abstract class. It can have abstract and
non-abstract methods (method with body). It needs to be extended and its method imple-
mented. It cannot be instantiated.

Syntax:
abstract class classname

{

}

abstract method
A method that is declared as abstract and does not have implementation is known as ab-

stract method. The method body will be defined by its subclass.

Abstract method can never be final and static. Any class that extends an abstract class
must implement all the abstract methods declared by the super class.

Note:
A normal class (non-abstract class) cannot have abstract methods.

Syntax:
abstract returntype functionname (); //No definition

syntax for abstract class and method:
modifier abstract class className

{

 //declare fields

 //declare methods

 abstract dataType methodName();

}

modifier class childClass extends className

{

dataType methodName()

{

}

}

Why do we need an abstract class?
Consider a class Animal that has a method sound() and the subclasses of it like Dog Lion,

Horse Cat etc. Since the animal sound differs from one animal to another, there is no point to
implement this method in parent class. This is because every child class must override this
method to give its own implementation details, like Lion class will say “Roar” in this method
and Horse class will say “Neigh”.

So when we know that all the animal child classes will and should override this method,
then there is no point to implement this method in parent class. Thus, making this method
abstract would be the good choice. This makes this method abstract and all the subclasses
to implement this method. We need not give any implementation to this method in parent
class.

Since the Animal class has an abstract method, it must be declared as abstract.

Now each animal must have a sound, by making this method abstract we made it compul-
sory to the child class to give implementation details to this method. This way we ensure that
every animal has a sound.

rules

Abstract classes are not Interfaces. 1.

An abstract class may2. have concrete (complete) methods.

An abstract class may or may not have an abstract method. But if any class has one or 3.
more abstract methods, it must be compulsorily labeled abstract.

Abstract classes can have Constructors, Member variables and Normal methods.4.

Abstract classes are never instantiated.5.

For design purpose, a class can be declared abstract even if it does not contain any 6.
abstract methods.

Reference of an abstract class can point to objects of its sub-classes thereby achieving 7.
run-time polymorphism Ex: Shape obj = new Rectangle();

A class derived from the abstract class must implement all those methods that are 8.
declared as abstract in the parent class.

If a child does not implement all the abstract methods of abstract parent class, then the 9.
child class must need to be declared abstract as well.

example 1
//abstract parent class

abstract class Animal

{

 //abstract method

 public abstract void sound();

}

//Lion class extends Animal class

public class Lion extends Animal

{

 public void sound()

{

 System.out.println(“Roars”);

 }

 public static void main(String args[])

{

 Animal obj = new Lion();

 obj.sound();

 }

}

Output:
Roars

In the above code, Animal is an abstract class and Lion is a concrete class.

example 2
abstract class Bank

{

abstract int getRateOfInterest();

}

class SBI extends Bank

{

int getRateOfInterest()

{

 return 7;

}

}

class PNB extends Bank

{

int getRateOfInterest()

{

 return 8;

}

}

public class TestBank

{

public static void main(String args[])

{

Bank b=new SBI();//if object is PNB, method of PNB will be invoked

int interest=b.getRateOfInterest();

System.out.println(“Rate of Interest is: “+interest+” %”);

b=new PNB();

System.out.println(“Rate of Interest is: “+b.getRateOfInterest()+” %”);

}

}

Inheritance and Interfaces 2.19

Output:
Rate of Interest is: 7 %

Rate of Interest is: 8 %

abstract class with concrete (normal) method
Abstract classes can also have normal methods with definitions, along with abstract

methods.

Sample Code:
abstract class A
{
 abstract void callme();
 public void normal()
 {
 System.out.println(“this is a normal (concrete) method.”);
 }
}
public class B extends A
{
 void callme()
 {
 System.out.println(“this is an callme (abstract) method.”);
 }
 public static void main(String[] args)
 {
 B b = new B();
 b.callme();
 b.normal();
 }
}

Output:
this is an callme (abstract) method.

this is a normal (concrete) method.

Observations about abstract classes in java
an instance of an abstract class cannot be created; but, we can have references 1.
of abstract class type though.

Sample Code:
abstract class Base

{

 abstract void fun();

}

class Derived extends Base

{

 void fun()

{

System.out.println(“Derived fun() called”);

}

}

public class Main

{

 public static void main(String args[])

{

 // Base b = new Base(); Will lead to error

 // We can have references of Base type.

 Base b = new Derived();

 b.fun();

 }

}

Output:
Derived fun() called

an abstract class can contain constructors in java. and a constructor of ab-2.
stract class is called when an instance of a inherited class is created.

Sample Code:
abstract class Base
{
 Base()
 {
 System.out.println(“Within Base Constructor”);
 }
 abstract void fun();
}
class Derived extends Base
{
 Derived()
 {
 System.out.println(“Within Derived Constructor”);
 }
 void fun()
 {
 System.out.println(“ Within Derived fun()”);
 }
}
public class Main
{
 public static void main(String args[])
 {
 Derived d = new Derived();
 }
}

Output:
Within Base Constructor
Within Derived Constructor

We can have an abstract class without any abstract method. this allows us to create 3.
classes that cannot be instantiated, but can only be inherited.

Sample Code:
abstract class Base

{

 void fun()

 {

 System.out.println(“Within Base fun()”);

 }

}

class Derived extends Base

{

}

public class Main

{

 public static void main(String args[])

 {

 Derived d = new Derived();

 d.fun();

 }

}

Output:
Within Base fun()

Abstract classes can also have final methods (methods that cannot be 4.
 overridden).

Sample Code:
abstract class Base

{

 final void fun()

 {

 System.out.println(“Within Derived fun()”);

 }

}

class Derived extends Base

{

}

public class Main

{

 public static void main(String args[])

 {

 Base b = new Derived();

 b.fun();

 }

}

Output:
Within Derived fun()

2.6 fInal MethOds and classes
The final keyword in java is used to restrict the user. The java final keyword can be ap-

plied to:

variable•	

method•	

class•	

Java final variable - To prevent constant variables
Java final method - To prevent method overriding
Java final class - To prevent inheritance

Figure: Uses of final in java

Java final variable
The final keyword can be applied with the variables, a final variable that have no value

it is called blank final variable or uninitialized final variable. It can be initialized in the con-
structor only. The blank final variable can be static also which will be initialized in the static
block only.

sample code:
A final variable speedlimit is defined within a class Vehicle. When we try to change the

value of this variable, we get an error. This is due to the fact that the value of final variable
cannot be changed, once a value is assigned to it.

public class Vehicle

{

 final int speedlimit=60;//final variable

 void run()

 {

 speedlimit=400;

 }

 public static void main(String args[])

 {

 Vehicle obj=new Vehicle();

 obj.run();

 }

}

Output:
/Vehicle.java:6: error: cannot assign a value to final variable speedlimit

 speedlimit=400;

 ^

1 error

Blank final variable
A final variable that is not initialized at the time of declaration is known as blank final

variable. We must initialize the blank final variable in constructor of the class otherwise it will
throw a compilation error.

Sample Code:

public class Vehicle

{

 final int speedlimit; //blank final variable

 void run()

 {

 }

 public static void main(String args[])

 {

 Vehicle obj=new Vehicle();

 obj.run();

 }

}

Output:
/Vehicle.java:3: error: variable speedlimit not initialized in the default constructor

 final int speedlimit; //blank final variable

 ^

1 error

java final Method
A Java method with the final keyword is called a final method and it cannot be overridden

in the subclass.

In general, final methods are faster than non-final methods because they are not required
to be resolved during run-time and they are bonded at compile time.

Sample Code:
class XYZ

{

 final void demo()

 {

 System.out.println(“XYZ Class Method”);

 }

}

public class ABC extends XYZ

{

 void demo()

 {

 System.out.println(“ABC Class Method”);

 }

 public static void main(String args[])

 {

 ABC obj= new ABC();

 obj.demo();

 }

}

Output:
/ABC.java:11: error: demo() in ABC cannot override demo() in XYZ

 void demo()

 ^

 overridden method is final

1 error

The following code will run fine as the final method demo() is not overridden. This shows
that final methods are inherited but they cannot be overridden.

Sample Code:

class XYZ

{

 final void demo()

 {

 System.out.println(“XYZ Class Method”);

 }

}

public class ABC extends XYZ

{

 public static void main(String args[])

 {

 ABC obj= new ABC();

 obj.demo();

 }

}

Output:
XYZ Class Method

Points to be remembered while using final methods:
Private methods of the superclass are automatically considered to be final. •	

Since the compiler knows that final methods cannot be overridden by a subclass, so •	
these methods can sometimes provide performance enhancement by removing calls
to final methods and replacing them with the expanded code of their declarations at
each method call location.

Methods made inline should be small and contain only few lines of code. If it grows •	
in size, the execution time benefits become a very costly affair.

A final’s method declaration can never change, so all subclasses use the same method •	
implementation and call to one can be resolved at compile time. This is known
as static binding.

java final class
Final class is a class that cannot be extended i.e. it cannot be inherited. •	

A final class can be a subclass but not a superclass.•	

Declaring a class as final implicitly declares all of its methods as final.•	

It is illegal to declare a class as both abstract and final since an abstract class is incomplete •	
by itself and relies upon its subclasses to provide complete implementations.

Several classes in Java are final e.g. String, Integer, and other wrapper classes.•	

The final keyword can be placed either before or after the access specifier.•	

Syntax:

final public class A

{

 //code

}

OR

public final class A

{

 //code

}

Sample Code:
final class XYZ

{

}

public class ABC extends XYZ

{

 void demo()

 {

 System.out.println(“My Method”);

 }

 public static void main(String args[])

 {

 ABC obj= new ABC();

 obj.demo();

 }

}

Output:
/ABC.java:5: error: cannot inherit from final XYZ

public class ABC extends XYZ

 ^

1 error

Important points on final in Java
Final keyword can be applied to a member variable, local variable, method or •	 class
in Java.

Final member variable must be initialized at the time of declaration or inside the •	
constructor, failure to do so will result in compilation error.

We cannot reassign value to a final variable in Java.•	

The local final variable must be initialized during declaration.•	

A final method cannot be •	 overridden in Java.

A final class cannot be inheritable in Java.•	

Final is a different than finally keyword which is used to •	 Exception handling in
Java.

Final should not be confused with finalize() method which is declared in Object class •	
and called before an object is a garbage collected by JVM.

All variable declared inside Java interface are implicitly final.•	

Final and abstract are two opposite keyword and a final class cannot be •	 abstract in
Java.

Final methods are bonded during compile time also called static binding.•	

Final variables which are not initialized during declaration are called blank final •	
variable and must be initialized in all constructor either explicitly or by calling
this(). Failure to do so compiler will complain as “final variable (name) might not be
initialized”.

Making a class, method or variable final in Java helps to improve performance because •	
JVM gets an opportunity to make assumption and optimization.

2.7 Interfaces
An interface is a reference type in Java. It is similar to class. It is a collection of abstract

methods. Along with abstract methods, an interface may also contain constants, default meth-
ods, static methods, and nested types. Method bodies exist only for default methods and static
methods.

An interface is similar to a class in the following ways:

An interface can contain any number of methods.•	

An interface is written in a file with a .java extension, with the name of the interface •	
matching the name of the file.

The byte code of an interface appears in a .class file.•	

Interfaces appear in packages, and their corresponding bytecode file must be in a •	
directory structure that matches the package name.

Uses of interface:
Since java does not support multiple inheritance in case of class, it can be achieved •	
by using interface.

It is also used to achieve loose coupling.•	

Interfaces are used to implement abstraction. •	

Defining an Interface
An interface is defined much like a class.

Syntax:
accessspecifier interface interfacename

{

return-type method-name1(parameter-list);

return-type method-name2(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

// ...

return-type method-nameN(parameter-list);

type final-varnameN = value;

}

When no access specifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared. When it is declared as pub-
lic, the interface can be used by any other code.

The java file must have the same name as the interface. •	

The methods that are declared have no bodies. They end with a semicolon after the •	
parameter list. They are abstract methods; there can be no default implementation of
any method specified within an interface.

Each class that includes an interface must implement all of the methods. •	

Variables can be declared inside of interface declarations. They are implicitly final •	
and static, meaning they cannot be changed by the implementing class. They must
also be initialized.

All methods and variables are implicitly public.•	

Sample Code:
The following code declares a simple interface Animal that contains two methods called

eat() and travel() that take no parameter.

/* File name : Animal.java */

interface Animal {

 public void eat();

 public void travel();

}

Implementing an Interface
Once an interface has been defined, one or more classes can implement that interface. To

implement an interface, the ‘implements’ clause is included in a class definition and then the
methods defined by the interface are created.

Syntax:
class classname [extends superclass] [implements interface [,interface...]]

{

// class-body

}

properties of java interface
If a class implements more than one interface, the interfaces are separated with a •	
comma.

If a class implements two interfaces that declare the same method, then the same •	
method will be used by clients of either interface.

The methods that implement an interface must be declared public. •	

The type signature of the implementing method must match exactly the type signature •	
specified in the interface definition.

rules
A class can implement more than one interface at a time.•	

A class can extend only one class, but can implement many interfaces.•	

An interface can extend another interface, in a similar way as a class can extend •	
another class.

Sample Code 1:
The following code implements an interface Animal shown earlier.

/* File name : MammalInt.java */

public class Mammal implements Animal

{

 public void eat()

{

 System.out.println(“Mammal eats”);

 }

 public void travel()

{

 System.out.println(“Mammal travels”);

 }

 public int noOfLegs()

{

 return 0;

 }

 public static void main(String args[])

{

 Mammal m = new Mammal();

 m.eat();

 m.travel();

 }

}

Output:
Mammal eats

Mammal travels

It is both permissible and common for classes that implement interfaces to define ad-
ditional members of their own. In the above code, Mammal class defines additional method
called noOfLegs().

Sample Code 2:
The following code initially defines an interface ‘Sample’ with two members. This inter-

face is implemented by a class named ‘testClass’.

import java.io.*;

// A simple interface

interface Sample

{

 final String name = “Shree”;

 void display();

}

 // A class that implements interface.

public class testClass implements Sample

{

 public void display()

 {

 System.out.println(“Welcome”);

 }

 public static void main (String[] args)

 {

 testClass t = new testClass();

 t.display();

 System.out.println(name);

 }

}

Output:
Welcome

Shree

Sample Code 3:
In this example, Drawable interface has only one method. Its implementation is provided

by Rectangle and Circle classes.

interface Drawable

{

void draw();

}

class Rectangle implements Drawable

{

public void draw()

{

 System.out.println(“Drawing rectangle”);

}

}

class Circle implements Drawable

{

public void draw()

{

 System.out.println(“Drawing circle”);

}

}

public class TestInterface

{

public static void main(String args[])

{

Drawable d=new Circle();

d.draw();

}

}

Output:

Drawing circle

nested Interface
An interface can be declared as a member of a class or another interface. Such an inter-

face is called a member interface or a nested interface. A nested interface can be declared as
public, private, or protected.

Sample Code:

interface MyInterfaceA

{

 void display();

 interface MyInterfaceB

 {

 void myMethod();

 }

}

public class NestedInterfaceDemo1 implements MyInterfaceA.MyInterfaceB

{

 public void myMethod()

 {

 System.out.println(“Nested interface method”);

 }

 public static void main(String args[])

 {

 MyInterfaceA.MyInterfaceB obj= new NestedInterfaceDemo1();

 obj.myMethod();

 }

}

Output:
Nested interface method

Differences between classes and interfaces
Both classes and Interfaces are used to create new reference types. A class is a collection

of fields and methods that operate on fields. A class creates reference types and these refer-
ence types are used to create objects. A class has a signature and a body. The syntax of class
declaration is shown below:

class class_Name extends superclass implements interface_1,….interface_n

 // class signature

 {

 //body of class.

 }

Signature of a class has class’s name and information that tells whether the class has in-
herited another class. The body of a class has fields and methods that operate on those fields.
A Class is created using a keyword class.

When a class is instantiated, each object created contains a copy of fields and methods
with them. The fields and members declared inside a class can be static or nonstatic. Static
members value is constant for each object whereas, the non-static members are initialized by
each object differently according to its requirement.

Members of a class have access specifiers that decide the visibility and accessibility of
the members to the user or to the subclasses. The access specifiers are public, private and pro-
tected. A class can be inherited by another class using the access specifier which will decide
the visibility of members of a superclass (inherited class) in a subclass (inheriting class).

An interface has fully abstract methods (methods with nobody). An interface is syntacti-
cally similar to the class but there is a major difference between class and interface that is a
class can be instantiated, but an interface can never be instantiated.

An interface is used to create the reference types. The importance of an interface in Java
is that, a class can inherit only a single class. To circumvent this restriction, the designers of
Java introduced a concept of interface. An interface declaration is syntactically similar to a
class, but there is no field declaration in interface and the methods inside an interface do not
have any implementation. An interface is declared using a keyword interface.

aspect for
comparison class Interface

basic A class is instantiated to create
objects.

An interface can never be instanti-
ated as the methods are unable to
perform any action on invoking.

Keyword class Interface
access
specifier

The members of a class can be
private, public or protected.

The members of an interface are
always public.

Methods The methods of a class are defined
to perform a specific action.

The methods in an interface are
purely abstract.

inheritance
A class can implement any num-
ber of interfaces and can extend
only one class.

An interface can extend multiple
interfaces but cannot implement
any interface.

Inheritance
keyword extends implements

constructor A class can have constructors to
initialize the variables.

An interface can never have a
constructor as there is hardly any
variable to initialize.

declaration
syntax

class class_Name

{

//fields

//Methods

}

Interface interface_Name

{

Type var_name=value;

Type method1(parameter-list);

Type method2(parameter-list);

..

}

The following example shows that a class that implements one interface:
public interface interface_example

{

public void method1();

public string method2();

}

public class class_name implements interface_example

{

public void method1()

{

..

}

public string method2()

{

…

}

}

Inheritance between concrete (non-abstract) and abstract classes use extends keyword.
It is possible to extend only one class to another. Java does not support multiple inheri-

tance. However, multilevel inheritance i.e., any number of classes in a ladder is possible. For
example, in the following code class C extends the class B, where the class B extends class
A.

class A {}

class B extends A { }

class C extends B { }

Inheritance between classes (including abstract classes) and interfaces, use implements
keyword.

To support multiple inheritance, it uses interfaces. So after implements keyword, there
can be any number of interfaces. For example, in the following code, class B extends only
one class A and two interfaces I1 and I2.

interface I1 {}

interface I2 {}

class A

class B extends A implements I1, I2

{

}

Inheritance between two interfaces, is possible with the use of extends keyword only.
For example, in the following code, interface I2 extends the interface I1.

interface I1 { }

interface I2 extends I1{ }

2.8 Object clOnIng
Object cloning refers to creation of exact copy of an object. It creates a new instance of

the class of current object and initializes all its fields with exactly the contents of the corre-
sponding fields of this object. In Java, there is no operator to create copy of an object. Unlike
C++, in Java, if we use assignment operator then it will create a copy of reference variable
and not the object. This can be explained by taking an example. Following program demon-
strates the same.

// Java program to demonstrate that assignment operator creates a new reference to same
object.

import java.io.*;

class sample

{

 int a;

 float b;

 sample()

 {

 a = 10;

 b = 20;

 }

}

class Mainclass

{

 public static void main(String[] args)

 {

 sample ob1 = new sample();

 System.out.println(ob1.a + “ “ + ob1.b);

 sample ob2 = ob1;

 ob2.a = 100;

 System.out.println(ob1.a+” “+ob1.b);

 System.out.println(ob2.a+” “+ob2.b);

 }

}

Output:

10 20.0

100 20.0

100 20.0

creating a copy using clone() method
The class whose object’s copy is to be made must have a public clone method in it or in

one of its parent class.

Every class that implements clone() should call super.clone() to obtain the cloned •	
object reference.

The class must also implement java.lang.Cloneable interface whose object clone •	
we want to create otherwise it will throw CloneNotSupportedException when clone
method is called on that class’s object.

Syntax:•	

protected Object clone() throws CloneNotSupportedException•	

import java.util.ArrayList;

class sample1

{

 int a, b;

}

class sample2 implements Cloneable

{

 int c;

 int d;

 sample1 s = new sample1();

 public Object clone() throws CloneNotSupportedException

 {

 return super.clone();

 }

}

public class Mainclass

{

 public static void main(String args[]) throws CloneNotSupportedException

 {

 sample2 ob1 = new sample2();

 ob1.c = 10;

 ob1.d = 20;

 ob1.s.a = 30;

 ob1.s.b = 40;

 sample2 ob2 = (sample2)ob1.clone();

 ob2.d = 100; //Change in primitive type of ob2 will not be reflected in ob1 field

 ob2.s.a = 300; //Change in object type field will be reflected in both ob2 and
ob1(shallow copy)

 System.out.println(ob1.c + “ “ + ob1.d + “ “ +ob1.s.a + “ “ + ob1.s.b);

 System.out.println(ob2.c + “ “ + ob2.d + “ “ +ob2.s.a + “ “ + ob2.s.b);

 }

}

types of Object cloning
 Deep Copy 1.

Shallow Copy2.

shallow copy
Shallow copy is method of copying an object. It is the default in cloning. In this method

the fields of an old object ob1 are copied to the new object ob2. While copying the object type
field the reference is copied to ob2 i.e. object ob2 will point to same location as pointed out
by ob1. If the field value is a primitive type it copies the value of the primitive type. So, any
changes made in referenced objects will be reflected in other object.

Note:

Shallow copies are cheap and simple to make.

deep copy

To create a deep copy of object ob1 and place it in a new object ob2 then new copy of any
referenced objects fields are created and these references are placed in object ob2. This means any
changes made in referenced object fields in object ob1 or ob2 will be reflected only in that object
and not in the other. A deep copy copies all fields, and makes copies of dynamically allocated
memory pointed to by the fields. A deep copy occurs when an object is copied along with the
objects to which it refers.

//Java program for deep copy using clone()

import java.util.ArrayList;

class Test

{

 int a, b;

}

class Test2 implements Cloneable

{

 int c, d;

 Test ob1 = new Test();

 public Object clone() throws CloneNotSupportedException

 {

 // Assign the shallow copy to new refernce variable t

 Test2 t1 = (Test2)super.clone();

 t1.ob1 = new Test();

 // Create a new object for the field c

 // and assign it to shallow copy obtained,

 // to make it a deep copy

 return t1;

 }

}

public class Main

{

 public static void main(String args[]) throws CloneNotSupportedException

 {

 Test2 t2 = new Test2();

 t2.c = 10;

 t2.d = 20;

 t2.ob1.a = 30;

 t2.ob1.b = 40;

 Test2 t3 = (Test2)t2.clone();

 t3.c = 100;

 t3.ob1.a = 300;

 System.out.println (t2.c + “ “ + t2.d + “ “ + t2.ob1.a + “ “ + t2.ob1.b);

 System.out.println (t3.c + “ “ + t3.d + “ “ + t3.ob1.a + “ “ + t3.ob1.b);

 }

}

Output
10 20 30 40

100 20 300 0

Advantages of clone method:
If we use assignment operator to assign an object reference to another reference •	
variable then it will point to same address location of the old object and no new copy
of the object will be created. Due to this any changes in reference variable will be
reflected in original object.

If we use copy constructor, then we have to copy all of the data over explicitly i.e. •	
we have to reassign all the fields of the class in constructor explicitly. But in clone
method this work of creating a new copy is done by the method itself. So to avoid
extra processing we use object cloning.

2.9 nested classes
In Java, a class can have another class as its member. The class written within another

class is called the nested class, and the class that holds the inner class is called the outer
class.

Java inner class is defined inside the body of another class. Java inner class can be de-
clared private, public, protected, or with default access whereas an outer class can have only
public or default access. The syntax of nested class is shown below:

class Outer_Demo {

 class Nested_Demo {

 }

 }

types of nested classes
There are two types of nested classes in java. They are non-static and static nested classes.

The non-static nested classes are also known as inner classes.

Non-static nested class (inner class)•	

Member inner class ○

Method Local inner class ○

Anonymous inner class ○

Static nested class•	

type description
Member Inner Class A class created within class and outside method.
Anonymous Inner Class A class created for implementing interface or extending class.

Its name is decided by the java compiler.
Method Local Inner Class A class created within method.
Static Nested Class A static class created within class.
Nested Interface An interface created within class or interface.

2.10 Inner classes (nOn-statIc nested classes)
Inner classes can be used as the security mechanism in Java. Normally, a class cannot be

related with the access specifier private. However if a class is defined as a member of other
class, then the inner class can be made private. This class can have access to the private mem-
bers of a class.

2.44 Object Oriented Programming

The three types of inner classes are

Member Inner Class•	

Method-local Inner Class•	

Anonymous Inner Class•	

Member Inner class
The Member inner class is a class written within another class. Unlike a class, an inner

class can be private and once you declare an inner class private, it cannot be accessed from
an object outside the class.

The following program is an example for member inner class.

 class Outer_class {

 int n=20;

 private class Inner_class {

 public void display() {

 System.out.println(“This is an inner class”);

 System.out.println(“n:”+n);

 }

 }

 void print_inner() {

 Inner_class inn = new Inner_class();

 inn.display();

 }

}

 public class Myclass {

 public static void main(String args[]) {

 Outer_class out= new Outer_class();

 out.print_inner();

 }

}

Output:
This is an inner class

Method-local Inner class
In Java, a class can be written within a method. Like local variables of the method, the

scope of the inner class is restricted within the method. A method-local inner class can be
instantiated only within the method where the inner class is defined. The following program
shows how to use a method-local inner class. The following program is an example for Meth-
od-local Inner Class

public class Outer_class {

 void Method1() {

 int n = 100;

 class MethodInner_class {

 public void display() {

 System.out.println(“This is method inner class “);

 System.out.println(“n:”+n);

 }

 }

 MethodInner_class inn= new MethodInner_class();

 inn.display();

 }

 public static void main(String args[]) {

 Outer_class out = new Outer_class();

 out.Method1();

 }

}

Output:

This is method inner class

n: 100

anonymous Inner class
An inner class declared without a class name is known as an anonymous inner class. The

anonymous inner classes can be created and instantiated at the same time. Generally, they are
used whenever you need to override the method of a class or an interface. The syntax of an
anonymous inner class is as follows –

abstract class Anonymous_Inner {

 public abstract void Method1();

}

The following program is an example for anonymous inner class.

public class Outer_class {

 public static void main(String args[]) {

 Anonymous_Inner inn = new Anonymous_Inner() {

 public void Method1() {

 System.out.println(“This is the anonymous inner class”);

 }

 };

 inn.Method1();

 }

}

Output:

This is the anonymous inner class

static nested class

A static inner class is a nested class which is a static member of the outer class. It can
be accessed without instantiating the outer class, using other static members. Just like static
members, a static nested class does not have access to the instance variables and methods of
the outer class. Instantiating a static nested class is different from instantiating an inner class.
The following program shows how to use a static nested class.

public class Outer_class {

 static class inner_class{

 public void Method1() {

 System.out.println(“This is the nested class”);

 }

 }

 public static void main(String args[]) {

 Outer_class.inner_class obj = new Outer_class.inner_class();

 obj.Method1();

 }

}

Output:

This is the nested class

advantage of java inner classes:
There are basically three advantages of inner classes in java. They are as follows:

Nested classes represent a special type of relationship that is it can access all the •	
members of outer class including private.

Nested classes are used to develop more readable and maintainable code because it •	
logically group classes and interfaces in one place only.

It provides code optimization. That is it requires less code to write.•	

2.11 arraylIst
ArrayList is a part of collection framework. It is present in java.util package. It provides

us dynamic arrays in Java. Though, it may be slower than standard arrays but can be helpful
in programs where lots of manipulation in the array is needed.

ArrayList inherits AbstractList class and implements List interface.•	

ArrayList is initialized by a size; however the size can increase if collection grows or •	
shrink if objects are removed from the collection.

Java ArrayList allows us to randomly access the list.•	

ArrayList cannot be used for primitive types, like int, char, etc. •	

ArrayList in Java is much similar to vector in C++.•	

java arraylist class
Java ArrayList class extends AbstractList class which implements List interface. The List

interface extends Collection and Iterable interfaces in hierarchical order.

Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList
class and implements List interface.

The important points about Java ArrayList class are:

Java ArrayList class can contain duplicate elements.•	

Java ArrayList class maintains insertion order.•	

Java ArrayList class is non synchronized.•	

Java ArrayList allows random access because array works at the index basis.•	

In Java ArrayList class, manipulation is slow because a lot of shifting needs to be •	
occurred if any element is removed from the array list.

arraylist class declaration

public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAc-
cess, Cloneable, Serializable

constructors of java arraylist

constructor description
ArrayList() It is used to build an empty array list.

ArrayList(Collection c) It is used to build an array list that is initialized with the
elements of the collection c.

ArrayList(int capacity) It is used to build an array list that has the specified initial
capacity.

Methods of java arraylist

Method description

void add(int index, Object
element)

It is used to insert the specified element at the specified
position index in a list.

boolean addAll
(Collection c)

It is used to append all of the elements in the specified
collection to the end of this list, in the order that they are
returned by the specified collection’s iterator.

void clear() It is used to remove all of the elements from this list.
int lastIndexOf(Object o) It is used to return the index in this list of the last occurrence

of the specified element, or -1 if the list does not contain this
element.

Object[] toArray() It is used to return an array containing all of the elements in
this list in the correct order.

Object[] toArray
(Object[] a)

It is used to return an array containing all of the elements in
this list in the correct order.

boolean add(Object o) It is used to append the specified element to the end of a list.
boolean addAll(int index,
Collection c)

It is used to insert all of the elements in the specified
collection into this list, starting at the specified position.

Object clone() It is used to return a shallow copy of an ArrayList.
int indexOf(Object o) It is used to return the index in this list of the first occurrence

of the specified element, or -1 if the List does not contain this
element.

void trimToSize() It is used to trim the capacity of this ArrayList instance to be
the list’s current size.

import java.util.*;

class Arraylist_example{

 public static void main(String args[]){

 ArrayList<String> a1=new ArrayList<String>();

 a1.add(“Bala”);

 a1.add(“Mala”);

 a1.add(“Vijay”);

 ArrayList<String> a2=new ArrayList<String>();

 a2.add(“kala”);

 a2.add(“Banu”);

2.50 Object Oriented Programming

 a1.addAll(a2);

 Iterator itr=a1.iterator();

 while(itr.hasNext()){

 System.out.println(itr.next());

 }

 }

}

2.12 java strIng
In general string is a sequence of characters. String is an object that represents a sequence

of characters. The java.lang.String class is used to create string object. In java, string is basi-
cally an object that represents sequence of char values. An array of characters works same as
java string. For example:

java string class provides a lot of methods to perform operations on string such as com-
pare(), concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring() etc.

The java.lang.String class implements Serializable, Comparable and CharSequence in-
terfaces. The CharSequence interface is used to represent sequence of characters. It is imple-
mented by String, StringBuffer and StringBuilder classes. It means can create string in java
by using these 3 classes.

The string objects can be created using two ways.

By String literal1.

By new Keyword2.

string literal

Java String literal is created by using double quotes. For Example:

String s=”welcome”; 1.

Each time you create a string literal, the JVM checks the string constant pool first. If the
string already exists in the pool, a reference to the pooled instance is returned. If string doesn’t
exist in the pool, a new string instance is created and placed in the pool. For example:

String s1=”Welcome”;

String s2=”Welcome”;

In the above example only one object will be created. Firstly JVM will not find any string
object with the value “Welcome” in string constant pool, so it will create a new object. After
that it will find the string with the value “Welcome” in the pool, it will not create new object
but will return the reference to the same instance. To make Java more memory efficient (be-
cause no new objects are created if it exists already in string constant pool).

the literal “Welcome” will be placed in the string constant pool. The variable s will refer to
the object in heap (non pool).

The java String is immutable i.e. it cannot be changed. Whenever we change any string,
a new instance is created. For mutable string, you can use StringBuffer and StringBuilder
classes.

The following program explains the creation of strings

public class String_Example{

public static void main(String args[]){

String s1=”java”;

char c[]={‘s’,’t’,’r’,’i’,’n’,’g’};

String s2=new String(c);

String s3=new String(“example”);

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

}}

java string class methods
The java.lang.String class provides many useful methods to perform operations on se-

quence of char values.

Method description
char charAt(int index) returns char value for the particular index
int length() returns string length
static String format(String format,
Object... args)

returns formatted string

static String format(Locale l, String
format, Object... args)

returns formatted string with given locale

String substring(int beginIndex) returns substring for given begin index
String substring(int beginIndex, int
endIndex)

returns substring for given begin index and
end index

boolean contains(CharSequence s) returns true or false after matching the se-
quence of char value

2. by new keyword
String s=new String(“Welcome”);

In such case, JVM will create a new string object in normal (non pool) heap memory and

2.52 Object Oriented Programming

static String join(CharSequence delim-
iter, CharSequence... elements)

returns a joined string

boolean equals(Object another) checks the equality of string with object
boolean isEmpty() checks if string is empty
String concat(String str) concatinates specified string
String replace(char old, char new) replaces all occurrences of specified char

value
String replace(CharSequence old, Char-
Sequence new)

replaces all occurrences of specified CharSe-
quence

static String equalsIgnoreCase(String
another)

compares another string. It doesn’t check
case.

String[] split(String regex) returns splitted string matching regex
String[] split(String regex, int limit) returns splitted string matching regex and

limit
String intern() returns interned string
int indexOf(int ch) returns specified char value index
int indexOf(int ch, int fromIndex) returns specified char value index starting

with given index
int indexOf(String substring) returns specified substring index
int indexOf(String substring, int fro-
mIndex)

returns specified substring index starting
with given index

String toLowerCase() returns string in lowercase.
String toLowerCase(Locale l) returns string in lowercase using specified

locale.
String toUpperCase() returns string in uppercase.
String toUpperCase(Locale l) returns string in uppercase using specified

locale.
String trim() removes beginning and ending spaces of this

string.
static String valueOf(int value) converts given type into string. It is over-

loaded

The following program is an example for String concat function:
class string_method{

 public static void main(String args[]){

 String s=”Java”;

Inheritance and Interfaces 2.53

 s=s.concat(“ Programming”);

 System.out.println(s);

 }

}

Output:
Java Programming

Exception Handling and I/O 3.1

3.1 ExcEptions
An exception is an unexpected event, which may occur during the execution of a program

(at run time), to disrupt the normal flow of the program’s instructions. This leads to the abnor-
mal termination of the program, which is not always recommended.

Therefore, these exceptions are needed to be handled. The exception handling in java is
one of the powerful mechanisms to handle the runtime errors so that normal flow of the ap-
plication can be maintained.

An exception may occur due to the following reasons. They are.

Invalid data as input.•	

Network connection may be disturbed in the middle of communications •	

JVM may run out of memory.•	

File cannot be found/opened.•	

These exceptions are caused by user error, programmer error, and physical resources.

Based on these, the exceptions can be classified into three categories.

Checked exceptions•	 − A checked exception is an exception that occurs at the compile
time, also called as compile time (static time) exceptions. These exceptions cannot
be ignored at the time of compilation. So, the programmer should handle these
exceptions.

Unchecked exceptions•	 − An unchecked exception is an exception that occurs at run
time, also called as Runtime Exceptions. These include programming bugs, such as
logic errors or improper use of an API. Runtime exceptions are ignored at the time of
compilation.

Errors•	 − Errors are not exceptions, but problems may arise beyond the control of the
user or the programmer. Errors are typically ignored in your code because you can
rarely do anything about an error. For example, if a stack overflow occurs, an error
will arise. They are also ignored at the time of compilation.

EXCEPTION HANDLING AND I/O

UNIT - 3

Error:•	 An Error indicates serious problem that a reasonable application should not
try to catch.

Exception:•	 Exception indicates conditions that a reasonable application might try to
catch.

3.2 ExcEption HiERaRcHy
The java.lang.Exception class is the base class for all exception classes. All exception and

errors types are sub classes of class Throwable, which is base class of hierarchy. One branch
is headed by Exception. This class is used for exceptional conditions that user programs
should catch. NullPointerException is an example of such an exception. Another branch, Er-
ror are used by the Java run-time system(JVM) to indicate errors having to do with the run-
time environment itself(JRE). StackOverflowError is an example of such an error.

Errors are abnormal conditions that happen in case of severe failures, these are not han-
dled by the Java programs. Errors are generated to indicate errors generated by the runtime
environment. Example: JVM is out of memory. Normally, programs cannot recover from
errors.

The Exception class has two main subclasses: IOException class and RuntimeException
Class.

Exceptions Methods

Method Description
public String getMessage() Returns a detailed message about the exception that has

occurred. This message is initialized in the Throwable
constructor.

public Throwable getCause() Returns the cause of the exception as represented by a
Throwable object.

public String toString() Returns the name of the class concatenated with the re-
sult of getMessage().

public void printStackTrace() Prints the result of toString() along with the stack trace to
System.err, the error output stream.

public StackTraceElement []

getStackTrace()

Returns an array containing each element on the stack
trace. The element at index 0 represents the top of the
call stack, and the last element in the array represents the
method at the bottom of the call stack.

public Throwable

fillInStackTrace()

Fills the stack trace of this Throwable object with the
current stack trace, adding to any previous information
in the stack trace.

Exception handling in java uses the following Keywords
try1.

catch2.

finally3.

throw4.

throws5.

The try/catch block is used as follows:
try {

// block of code to monitor for errors

// the code you think can raise an exception

}

catch (ExceptionType1 exOb) {

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb) {

// exception handler for ExceptionType

}

// optional

finally {

// block of code to be executed after try block ends

}

throwing and catching exceptions
Catching Exceptions

A method catches an exception using a combination of the try and catch keywords. The
program code that may generate an exception should be placed inside the try/catch block. The
syntax for try/catch is depicted as below−

Syntax
try {

// Protected code

} catch (ExceptionName e1) {

// Catch block

}

The code which is prone to exceptions is placed in the try block. When an exception oc-
curs, that exception is handled by catch block associated with it. Every try block should be
immediately followed either by a catch block or finally block.

A catch statement involves declaring the type of exception that might be tried to catch. If
an exception occurs, then the catch block (or blocks) which follow the try block is checked.
If the type of exception that occurred is listed in a catch block, the exception is passed to the
catch block similar to an argument that is passed into a method parameter.

To illustrate the try-catch blocks the following program is developed.
class Exception_example {

public static void main(String args[])

{

 int a,b;

try { // monitor a block of code.

 a = 0;

 b = 10 / a; //raises the arithmetic exception

System.out.println(“Try block.”);

}

 catch (ArithmeticException e)

{ // catch divide-by-zero error

System.out.println(“Division by zero.”);

 }

 System.out.println(“After try/catch block.”);

 }

 }

Output:
Division by zero.

After try/catch block.

Multiple catch clauses
In some cases, more than one exception could be raised by a single piece of code. To

handle this multiple exceptions, two or more catch clauses can be specified. Here, each catch
block catches different type of exception. When an exception is thrown, each catch statement
is inspected in order, and the first one whose type matches that of the exception is executed.
After one catch statement executes, the others are bypassed, and execution continues after the
try/catch block. The following example traps two different exception types:

class MultiCatch_Example {

 public static void main(String args[]) {

try {

int a,b;

a = args.length;

System.out.println(“a = “ + a);

b = 10 / a; //may cause division-by-zero error

int arr[] = { 10,20 };

 c[5] =100;

}

catch(ArithmeticException e)

{

System.out.println(“Divide by 0: “ + e);

}

 catch(ArrayIndexOutOfBoundsException e)

{

 System.out.println(“Array index oob: “ + e);

}

 System.out.println(“After try/catch blocks.”);

 }

 }

Here is the output generated by the execution of the program in both ways:
C:\>java MultiCatch_Example

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

 After try/catch blocks.

C:\>java MultiCatch_Example arg1

 a = 1

 Array index oob: java.lang.ArrayIndexOutOfBoundsException:5

After try/catch blocks.

While the multiple catch statements is used, it is important to remember that exception
subclasses must come before their superclasses. A catch statement which uses a superclass
will catch exceptions of that type plus any of its subclasses. Thus, a subclass would never
be reached if it came after its superclass. And also, in Java, unreachable code is an error. For
example, consider the following program:

class MultiCatch_Example {

 public static void main(String args[]) {

try {

int a,b;

a = args.length;

System.out.println(“a = “ + a);

b = 10 / a; //may cause division-by-zero error

int arr[] = { 10,20 };

 c[5] =100;

}

catch(Exception e) {

System.out.println(“Generic Exception catch.”);

}

catch(ArithmeticException e)

{

System.out.println(“Divide by 0: “ + e);

}

 catch(ArrayIndexOutOfBoundsException e)

{

 System.out.println(“Array index oob: “ + e);

}

 System.out.println(“After try/catch blocks.”);

 }

 }

The exceptions such as ArithmeticException, and ArrayIndexOutOfBoundsException are
the subclasses of Exception class. The catch statement after the base class catch statement is
raising the unreachable code exception.

nested try block
Sometimes a situation may arise where a part of a block may cause one error and the entire

block itself may cause another error. In such cases, exception handlers have to be nested.

try

{

 statement 1;

 statement 2;

 try

 {

 statement 1;

 statement 2;

 }

 catch(Exception e)

 {

 }

}

catch(Exception e)

{

}

....

The following program is an example for Nested try statements.
class Nestedtry_Example{

 public static void main(String args[]){

 try{

 try{

 System.out.println(“division”);

 int a,b;

 a=0;

 b =10/a;

 }

 catch(ArithmeticException e)

 {

 System.out.println(e);

 }

 try

 {

 int a[]=new int[5];

 a[6]=3;

 }

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println(e);

 }

 System.out.println(“other statement);

 }

 catch(Exception e)

{

 System.out.println(“handeled”);}

 System.out.println(“normal flow..”);

 }

}

throw keyword
The Java throw keyword is used to explicitly throw an exception. The general form of

throw is shown below:

 throw ThrowableInstance;

 Here, ThrowableInstance must be an object of type Throwable or a subclass of Throw-
able. Primitive types, such as int or char, as well as non-Throwable classes, such as String and
Object, cannot be used as exceptions.

There are two ways to obtain a Throwable object:
using a parameter in a catch clause1.

creating one with the new operator. 2.

The following program explains the use of throw keyword.
public class TestThrow1{

static void validate(int age){

 try{

 if(age<18)

 throw new ArithmeticException(“not valid”);

 else

 System.out.println(“welcome to vote”);

 }

 Catch(ArithmeticException e)

 {

 System.out.println(“Caught inside ArithmeticExceptions.”);

 throw e; // rethrow the exception

 }

 }

 public static void main(String args[]){

try{

validate(13);

}

Catch(ArithmeticException e)

 {

 System.out.println(“ReCaught ArithmeticExceptions.”);

 }

}

}

The flow of execution stops immediately after the throw statement and any subsequent
statements that are not executed. The nearest enclosing try block is inspected to see if it has
a catch statement that matches the type of exception. If it does find a match, control is trans-
ferred to that statement. If not, then the next enclosing try statement is inspected, and so on.
If no matching catch is found, then the default exception handler halts the program and prints
the stack trace.

the throws/throw Keywords
If a method does not handle a checked exception, the method must be declared using

the throws keyword. The throws keyword appears at the end of a method’s signature.

The difference between throws and throw keywords is that, throws is used to postpone the
handling of a checked exception and throw is used to invoke an exception explicitly.

The following method declares that it throws a Remote Exception −
Example

import java.io.*;

public class throw_Example1 {

public void function(int a) throws RemoteException {

// Method implementation

throw new RemoteException();

 } // Remainder of class definition

}

A method can declare that it throws more than one exception, in which case the excep-
tions are declared in a list separated by commas. For example, the following method declares
that it throws a RemoteException and an ArithmeticException −

import java.io.*;

public class throw_Example2 {

public void function(int a) throws RemoteException,ArithmeticException {

// Method implementation

 }

 // Remainder of class definition

}

the Finally Block
The finally block follows a try block or a catch block. A finally block of code always ex-

ecutes, irrespective of the occurrence of an Exception. A finally block appears at the end of
the catch blocks that follows the below syntax.

Syntax

try {

 // Protected code

} catch (ExceptionType1 e1) {

 // Catch block

} catch (ExceptionType2 e2) {

 // Catch block

}

finally {

 // The finally block always executes.

}

Example
public class Finally_Example {

 public static void main(String args[]) {

 try {

 int a,b;

 a=0;

 b=10/a;

 } catch (ArithmeticException e) {

 System.out.println(“Exception thrown :” + e);

 }finally {

 System.out.println(“The finally block is executed”);

 }

 }

 }

points to remember:
A catch clause cannot exist without a try statement.•	

It is not compulsory to have finally clauses whenever a try/catch block is present.•	

The try block cannot be present without either catch clause or finally clause.•	

Any code cannot be present in between the try, catch, finally blocks.•	

3.3 Built-in ExcEptions
Built-in exceptions are the exceptions which are available in Java libraries. These excep-

tions are suitable to explain certain error situations. Below is the list of important built-in
exceptions in Java.

Exceptions Description
Arithmetic Exception It is thrown when an exceptional condition has oc-

curred in an arithmetic operation.

Array Index Out Of Bound
Exception

It is thrown to indicate that an array has been accessed
with an illegal index. The index is either negative or
greater than or equal to the size of the array.

ClassNotFoundException This Exception is raised when we try to access a class
whose definition is not found.

FileNotFoundException This Exception is raised when a file is not accessible
or does not open.

IOException It is thrown when an input-output operation failed or
interrupted.

InterruptedException It is thrown when a thread is waiting, sleeping, or do-
ing some processing, and it is interrupted.

NoSuchFieldException It is thrown when a class does not contain the field (or
variable) specified.

NoSuchMethodException It is thrown when accessing a method which is not
found.

NullPointerException This exception is raised when referring to the members
of a null object. Null represents nothing.

NumberFormatException This exception is raised when a method could not con-
vert a string into a numeric format.

RuntimeException This represents any exception which occurs during
runtime.

StringIndexOutOfBoundsEx-
ception

It is thrown by String class methods to indicate that an
index is either negative than the size of the string

The following Java program explains NumberFormatException
class NumberFormat_Example

{

 public static void main(String args[])

 {

 try {

 int num = Integer.parseInt (“hello”) ;

 System.out.println(num);

 }

 catch(NumberFormatException e) {

 System.out.println(“Number format exception”);

 }

 }

}

The following Java program explains StackOverflowError exception.
class Example {

public static void main(String[] args)

 {

 fun1();

 }

public static void fun1()

 {

 fun2();

 }

public static void fun2()

 {

 fun1();

 }

}

Output:
Exception in thread “main” java.lang.StackOverflowError

at Example.fun2(File.java:14)

at Example.fun1(File.java:10)

3.4 usER DEFinED ExcEption in Java
Java allows the user to create their own exception class which is derived from built-

in class Exception. The Exception class inherits all the methods from the class Throwable.
The Throwable class is the superclass of all errors and exceptions in the Java language. It
contains a snapshot of the execution stack of its thread at the time it was created. It can also
contain a message string that gives more information about the error.

The Exception class is defined in java.lang package.•	

User defined exception class must inherit Exception class. •	

The user defined exception can be thrown using throw keyword.•	

Syntax:
 class User_defined_name extends Exception{

 ………..

 }

Some of the methods defined by Throwable are shown in below table.

Methods Description
Throwable fillInStackTrace() Fills in the execution stack trace and returns a

Throwable object.
String getLocalizedMessage() Returns a localized description of the exception.
String getMessage() Returns a description of the exception.

void printStackTrace() Displays the stack trace.
String toString() Returns a String object containing a description

of the Exception.
StackTraceElement[]get
StackTrace()

Returns an array that contains the stack trace, one
element at a time, as an array of StackTraceEle-
ment.

two commonly used constructors of Exception class are:
Exception() - Constructs a new exception with null as its detail message.•	

Exception(String message) - Constructs a new exception with the specified detail •	
message.

Example:
//creating a user-defined exception class derived from Exception class

public class MyException extends Exception

{

public String toString(){ // overriding toString() method

 return “User-Defined Exception”;

}

public static void main(String args[]){

 MyException obj= new MyException();

 try

 {

 throw new MyException(); // customized exception is raised

 }

 catch(MyException e)
 /*Printing object e makes a call to toString() method which

returns String error message*/
 {

 System.out.println(“Exception handled - “+ e);

 }

}

}

Sample Output:
Exception handled - User-Defined Exception

In the above example, a custom defined exception class MyException is created by inher-
iting it from Exception class. The toString() method is overridden to display the customized
method on catch. The MyException is raised using the throw keyword.

Example:
Program to create user defined exception that test for odd numbers.

import java.util.Scanner;

class OddNumberException extends Exception

{

 OddNumberException() //default constructor

 {

 super(“Odd number exception”);

 }

 OddNumberException(String msg) //parameterized constructor

 {

 super(msg);

 }

}

public class UserdefinedExceptionDemo{

 public static void main(String[] args)

 {

 int num;

 Scanner Sc = new Scanner(System.in); // create Scanner object to read input

 System.out.println(“Enter a number : “);

 num = Integer.parseInt(Sc.nextLine());

 try

 {

 if(num%2 != 0) // test for odd number

 throw(new OddNumberException()); // raise the exception if number is odd

 else

 System.out.println(num + “ is an even number”);

 }

 catch(OddNumberException Ex)

 {

 System.out.print(“\n\tError : “ + Ex.getMessage());

 }

 }

 }

Sample Output1:
Enter a number : 11

Error : Odd number exception

Sample Output2:
10 is an even number

Odd Number Exception class is derived from the Exception class. To implement user
defined exception we need to throw an exception object explicitly. In the above example, If
the value of num variable is odd, then the throw keyword will raise the user defined exception
and the catch block will get execute.

3.5 cHainED ExcEptions
Chained Exceptions allows to relate one exception with another exception, i.e one ex-

ception describes cause of another exception. For example, consider a situation in which a
method throws an ArithmeticException because of an attempt to divide by zero but the actual
cause of exception was an I/O error which caused the divisor to be zero. The method will
throw only ArithmeticException to the caller. So the caller would not come to know about the
actual cause of exception. Chained Exception is used in such type of situations.

throwable constructors that supports chained exceptions are:
Throwable(Throwable cause) :- Where cause is the exception that causes the current 1.
exception.

Throwable(String msg, Throwable cause) :- Where msg is the exception message and 2.
cause is the exception that causes the current exception.

throwable methods that supports chained exceptions are:
getCause() method :- This method returns actual cause of an exception.1.

initCause(Throwable cause) method :- This method sets the cause for the calling ex-2.
ception.

Example:
import java.io.IOException;

public class ChainedException

 {

 public static void divide(int a, int b)

 {

 if(b==0)

 {

 ArithmeticException ae = new ArithmeticException(“top layer”);

 ae.initCause(new IOException(“cause”));

 throw ae;

 }

 else

 {

 System.out.println(a/b);

 }

 }

 public static void main(String[] args)

 {

 try {

 divide(5, 0);

 }

 catch(ArithmeticException ae) {

 System.out.println(“caught : “ +ae);

 System.out.println(“actual cause: “+ae.getCause());

 }

 }

}

Sample Output:
caught : java.lang.ArithmeticException: top layer

actual cause: java.io.IOException: cause

In this example, the top-level exception is ArithmeticException. To it is added a cause
exception, IOException. When the exception is thrown out of divide(), it is caught by main(
). There, the top-level exception is displayed, followed by the underlying exception, which is
obtained by calling getCause().

3.6 stacK tRacE ElEMEnt
The StackTraceElement class element represents a single stack frame which is a stack

trace when an exception occurs. Extracting stack trace from an exception could provide use-
ful information such as class name, method name, file name, and the source-code line num-
ber. The getStackTrace() method of the Throwable class returns an array of StackTraceEle-
ments.

stacktraceElement class constructor
StackTraceElement(String declaringClass, String methodName, String fileName, int

lineNumber)

This creates a stack trace element representing the specified execution point.

Stack Trace Element class methods

Method Description
boolean equals(Object obj) Returns true if the invoking StackTraceElement is the

same as the one passed in obj. Otherwise, it returns false.
String getClassName() Returns the class name of the execution point
String getFileName() Returns the filename of the execution point
int getLineNumber() Returns the source-code line number of the execution

point
String getMethodName() Returns the method name of the execution point
String toString() Returns the String equivalent of the invoking sequence

Example:
public class StackTraceEx{

 public static void main(String[] args) {

 try{

 throw new RuntimeException(“go”); //raising an runtime exception

 }

 catch(Exception e){

 System.out.println(“Printing stack trace:”);

//create array of stack trace elements

final StackTraceElement[] stackTrace = e.getStackTrace();

for (StackTraceElement s : stackTrace) {

 System.out.println(“\tat “ + s.getClassName() + “.” + s.getMethodName()

 + “(“ + s.getFileName() + “:” + s.getLineNumber() + “)”);

 }

 }

 }

}

Sample Output:
Printing stack trace:

 at StackTraceEx.main(StackTraceEx.java:5)

3.7 input/output Basics
Java I/O (Input and Output) is used to process the input and produce the output. Java uses

the concept of stream to make I/O operation fast. All the classes required for input and output
operations are declared in java.io package.

A stream can be defined as a sequence of data. The Input Stream is used to read data from
a source and the OutputStream is used for writing data to a destination.

Java defines two types of streams. They are,
Byte Stream :1. It is used for handling input and output of 8 bit bytes. The frequently
used classes are FileInputStream and FileOutputStream.

Character Stream :2. It is used for handling input and output of characters. Charac-
ter stream uses 16 bit Unicode. The frequently used classes are FileReader and File
Writer.

Byte stream classes
The byte stream classes are topped by two abstract classes InputStream and Output-

Stream.

inputstream class
InputStream class is an abstract class. It is the super class of all classes representing an

input stream of bytes.

The Input Strearn class is the superclass for all byte-oriented input stream classes. •	

All the methods of this class throw an IOException. •	

Being an abstract class, the InputStrearn class cannot be instantiated hence, its •	
subclasses are used

Some of the Input Stream classes are listed below

class Description

Buffered Input Stream Contains methods to read bytes from the buffer (memory
area)

Byte Array Input
Stream

Contains methods to read bytes from a byte array

Data Input Stream Contains methods to read Java primitive data types

File Input Stream Contains methods to read bytes from a file

Filter Input Stream Contains methods to read bytes from other input streams
which it uses as its basic source of data

Object Input Stream Contains methods to read objects

Piped Input Stream Contains methods to read from a piped output stream. A
piped input stream must be connected to a piped output
stream

Sequence Input Stream Contains methods to concatenate multiple input streams and
then read from the combined stream

 Some of the useful methods of InputStream are listed below.

Method Description
public abstract int read()
throws IOException

Reads the next byte of data from the input stream. It returns -1
at the end of file.

public int available()
throws IOException

Returns an estimate of the number of bytes that can be read
from the current input stream.

public void close()
throws IOException

Close the current input stream

Fig. InputStream class Hierarchy

outputstream class
OutputStream class is an abstract class. It is the super class of all classes representing an

output stream of bytes. An output stream accepts output bytes and sends them to some sink.

class Description
Buffered Output Stream Contains methods to write bytes into the buffer
Byte Array Output Stream Contains methods to write bytes into a byte array
Data Output Stream Contains methods to write Java primitive data types
File Output Stream Contains methods to write bytes to a file
Filter Output Stream Contains methods to write to other output streams
Object Output Stream Contains methods to write objects
Piped Output Stream Contains methods to write to a piped output stream
Print Stream Contains methods to print Java primitive data types

 Some of the useful methods of OutputStream class are listed below.

Method Description
public void write(int)throws
IO Exception

Write a byte to the current output stream.

public void write(byte[])
throws IO Exception

Write an array of byte to the current output
stream.

public void flush()throws
IO Exception

Flushes the current output stream.

public void close()throws
IO Exception

close the current output stream.

Fig. OutputStream class Hierarchy

character stream classes
The character stream classes are also topped by two abstract classes Reader and Writer.

Some important Character stream reader classes are listed below.
Reader classes are used to read 16-bit unicode characters from the input stream.

The Reader class is the superclass for all character-oriented input stream classes.•	

All the methods of this class throw an IO Exception.•	

Being an abstract class, the Reader class cannot be instantiated hence its subclasses •	
are used.

Reader class Description
BufferedReader Contains methods to read characters from the buffer
FileReader Contains methods to read from a file
InputStreamReader Contains methods to convert bytes to characters
Reader Abstract class that describes character stream input

The Reader class defines various methods to perform reading operations on data of an
input stream. Some of these methods are listed below.

Method Description
int read() returns the integral representation of the next available char-

acter of input. It returns -1 when end of file is encountered
int read (char buffer []) attempts to read buffer. length characters into the buffer and

returns the total number of characters successfully read. It re-
turns -I when end of file is encountered

int read (char buffer [],
int loc, int nChars)

attempts to read ‘nChars’ characters into the buffer starting
at buffer [loc] and returns the total number of characters suc-
cessfully read. It returns -1 when end of file is encountered

long skip (long nChars) skips ‘nChars’ characters of the input stream and returns the
number of actually skipped characters

void close () closes the input source. If an attempt is made to read even
after closing the stream then it generates IOException

Some important Character stream writer classes are listed below.
Writer classes are used to write 16-bit Unicode characters onto an outputstream.

The Writer class is the superclass for all character-oriented output stream classes .•	

All the methods of this class throw an IOException. •	

Being an abstract class, the Writer class cannot be instantiated hence, its subclasses •	
are used.

Writer class Description
BufferedWriter Contains methods to write characters to a buffer
FileWriter Contains methods to write to a file
OutputStreamReader Contains methods to convert from bytes to character
PrintWriter Output stream that contains print() and println()
Writer Abstract class that describes character stream output

The Writer class defines various methods to perform writing operations on output stream.
Some of these methods are listed below.

Method Description
void write () writes data to the output stream
void write (int i) Writes a single character to the output stream
void write (char buffer []) writes an array of characters to the output stream
void write(char buffer [],int
loc, int nChars)

writes ‘n’ characters from the buffer starting at
buffer [loc] to the output stream

void close () closes the output stream. If an attempt is made to
perform writing operation even after closing the stream
then it generates IOException

void flush () flushes the output stream and writes the waiting
buffered output characters

Predefined Streams
Java provides the following three standard streams −

Standard Input − refers to the standard InputStream which is the keyboard by default. •	
This is used to feed the data to user’s program and represented as system.in.

Standard Output − refers to the standard OutputStream by default,this is console and •	
represented as system.out.

Standard Error − This is used to output the error data produced by the user’s program •	
and usually a computer screen is used for standard error stream and represented
as system.err.

The System class is defined in java.lang package. It contains three predefined stream vari-
ables: in, out, err. These are declared as public and static within the system.

3.8 REaDing consolE input
Reading characters

The read() method is used with BufferedReader object to read characters. As this function
returns integer type value has we need to use typecasting to convert it into char type.

Syntax:

int read() throws IOException

Example:

Read character from keyboard

import java.io.*;

class Main

{

 public static void main(String args[]) throws IOException

 {

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 char c;

 System.out.println(“Enter characters, @ to quit”);

 do{

 c = (char)br.read(); //Reading character

 System.out.println(c);

 }while(c!=’@’);

 }

}

Sample Output:

Enter characters, @ to quit

abcd23@

a

b

c

d

2

3

@

Example:
Read string from keyboard

The readLine() function with BufferedReader class’s object is used to read string from
keyboard.

Syntax:
String readLine() throws IOException

Example :
import java.io.*;

public class Main{

public static void main(String args[])throws Exception{

 InputStreamReader r=new InputStreamReader(System.in);

 BufferedReader br=new BufferedReader(r);

 System.out.println(“Enter your name”);

 String name=br.readLine();

 System.out.println(“Welcome “+name);

}

}

Sample Output :
Enter your name

Priya

Welcome Priya

3.9 WRiting consolE output
Console output is most easily accomplished with print() and println(). These methods •	
are defined by the class PrintStream (which is the type of object referenced by System.
out).

Since PrintStream is an output stream derived from OutputStream, it also implements •	
the low-level method write().

So, write() can be used to write to the console. •	

Syntax:
void write(int byteval)

This method writes to the stream the byte specified by byteval.

The following java program uses write() to output the character “A” followed by a new-
line to the screen:

// Demonstrate System.out.write().

class WriteDemo

 {

public static void main(String args[])

{

 int b;

b = ‘A’;

System.out.write(b);

System.out.write(‘\n’);

 }

 }

3.10tHE pRintWRitER class
Although using System.out to write to the console is acceptable, its use is recommended •	
mostly for debugging purposes or for sample programs.

For real-world programs, the recommended method of writing to the console when •	
using Java is through a PrintWriter stream.

PrintWriter is one of the character-based classes. •	

Using a character-based class for console output makes it easier to internationalize •	
our program.

PrintWriter defines several constructors. •	

Syntax:
PrintWriter(OutputStream outputStream, boolean flushOnNewline)

Here,

output Stream is an object of type OutputStream•	

flushOnNewline controls whether Java flushes the output stream every time a println(•	
) method is called.

If flushOnNewline is true, flushing automatically takes place. If false, flushing is not •	
automatic.

PrintWriter supports the print() and println() methods for all types including •	
Object.

Thus, we can use these methods in the same way as they have been used with System.•	
out.

If an argument is not a simple type, the PrintWriter methods call the object’s toString(•	
) method and then print the result.

To write to the console by using a PrintWriter, specify System.out for the output •	
stream and flush the stream after each newline.

For example, the following code creates a PrintWriter that is connected to console output:
PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle console output:

// Demonstrate PrintWriter

import java.io.*;

public class PrintWriterDemo

{

 public static void main(String args[])

{

PrintWriter pw = new PrintWriter(System.out, true);

pw.println(“This is a string”);

 int i = -7;

pw.println(i);

double d = 4.5e-7;

pw.println(d);

 }

 }

Sample Output:
This is a string

-7

 4.5E-7

3.11 REaDing anD WRiting FilEs
In Java, all files are byte-oriented, and Java provides methods to read and write bytes from

and to a file.

Two of the most often-used stream classes are FileInputStream and FileOutputStream,
which create byte streams linked to files.

File input stream
This stream is used for reading data from the files. Objects can be created using the key-

word new and there are several types of constructors available.

The two constructors which can be used to create a FileInputStream object:

Following constructor takes a file name as a string to create an input stream object to i)
read the file:

 InputStream f = new FileInputStream(“filename “);

Following constructor takes a file object to create an input stream object to read the ii)
file. First we create a file object using File() method as follows:

 File f = new File(“C:/java/hello”);

 InputStream f = new FileInputStream(f);

Methods to read to stream or to do other operations on the stream.

Method Description
public void close() throws
IOException{}

Closes the file output stream.•	

Releases any system resources associated with the •	
file.

Throws an IOException.•	
protected void finalize()throws
IOException {}

Ceans up the connection to the file. •	

Ensures that the close method of this file output •	
stream is called when there are no more references
to this stream.

Throws an IOException.•	
public int read(int r)throws
IOException{}

Reads the specified byte of data from the •	
InputStream.

Returns an int. •	

Returns the next byte of data and -1 will be returned •	
if it’s the end of the file.

public int read(byte[] r) throws
IOException{}

Reads r.length bytes from the input stream into an •	
array.

Returns the total number of bytes read. If it is the •	
end of the file, -1 will be returned.

public int available() throws
IOException{}

Gives the number of bytes that can be read from •	
this file input stream.

Returns an int.•	

File output stream
FileOutputStream is used to create a file and write data into it.

The stream would create a file, if it doesn’t already exist, before opening it for output.

The two constructors which can be used to create a FileOutputStream object:
Following constructor takes a file name as a string to create an input stream object to i)
write the file:

 OutputStream f = new FileOutputStream(“filename”);

Following constructor takes a file object to create an output stream object to write the ii)
file. First, we create a file object using File() method as follows:

 File f = new File(“C:/java/hello”);

 OutputStream f = new FileOutputStream(f);

Methods to write to stream or to do other operations on the stream

Method Description
public void close() throws IO-
Exception{}

Closes the file output stream. •	

Releases any system resources associated with the •	
file.

Throws an IOException.•	
protected void finalize()throws
IOException {}

Cleans up the connection to the file. •	

Ensures that the close method of this file output •	
stream is called when there are no more references
to this stream.

Throws an IOException.•	
public void write(int w)throws
IOException{}

Writes the specified byte to the output stream.•	

public void write(byte[] w) Writes w.length bytes from the mentioned byte •	
array to the OutputStream.

Following code demonstrates the use of InputStream and OutputStream.
import java.io.*;

public class fileStreamTest

{

 public static void main(String args[])

{

try

{

 byte bWrite [] = {11,21,3,40,5};

 OutputStream os = new FileOutputStream(“test.txt”);

 for(int x = 0; x < bWrite.length ; x++)

 {

 os.write(bWrite[x]); // writes the bytes

 }

 os.close();

 InputStream is = new FileInputStream(“test.txt”);

 int size = is.available();

 for(int i = 0; i < size; i++)

 {

 System.out.print((char)is.read() + “ “);

 }

 is.close();

 }

catch (IOException e)

{

 System.out.print(“Exception”);

 }

 }

}

The above code creates a file named test.txt and writes given numbers in binary format.
The same will be displayed as output on the stdout screen.

Multi Threading and Generic Programming 4.1

4.1 Multithreading and Multi-tasking
In programming, there are two main ways to improve the throughput of a program:

i) by using multi-threading

ii) by using multitasking

Both these methods take advantage of parallelism to efficiently utilize the power of CPU
and improve the throughput of program.

difference between multithreading and multi-tasking
The basic difference between multitasking and multithreading is that in multitasking, 1.
the system allows executing multiple programs and tasks at the same time, whereas,
in multithreading, the system executes multiple threads of the same or different pro-
cesses at the same time.

Multi-threading is more granular than multi-tasking. In multi-tasking, CPU switches 2.
between multiple programs to complete their execution in real time, while in multi-
threading CPU switches between multiple threads of the same program. Switching
between multiple processes has more context switching cost than switching between
multiple threads of the same program.

Processes are heavyweight as compared to threads. They require their own address 3.
space, which means multi-tasking is heavy compared to multithreading.

Multitasking allocates4. separate memory and resources for each process/program
whereas, in multithreading threads belonging to the same process shares the same
memory and resources as that of the process.

MULTI THREADING AND GENERIC PROGRAMMING

UNIT-4

Comparison between multithreading and multi-tasking

Parameter Multi tasking Multi threading
Basic Multitasking lets CPU to execute

multiple tasks at the same time.
Multithreading lets CPU to execute
multiple threads of a process simul-
taneously.

Switching In multitasking, CPU switches
between programs frequently.

In multithreading, CPU switches
between the threads frequently.

Memory and
Resource

In multitasking, system has to
allocate separate memory and
resources to each program that
CPU is executing.

In multithreading, system has to
allocate memory to a process,
multiple threads of that process shares
the same memory and resources
allocated to the process.

Multitasking
Multitasking is when a single CPU performs several tasks (program, process, task,

threads) at the same time. To perform multitasking, the CPU switches among these tasks
very frequently so that user can interact with each program simultaneously.

In a multitasking operating system, several users can share the system simultaneously.
CPU rapidly switches among the tasks, so a little time is needed to switch from one user to the
next user. This puts an impression on a user that entire computer system is dedicated to him.

Figure: Multitasking

When several users are sharing a multitasking operating system, CPU scheduling and
multiprogramming makes it possible for each user to have at least a small portion of
Multitasking OS and let each user have at least one program in the memory for execution.

Multi threading
Multithreading is different from multitasking in a sense that multitasking allows mul-

tiple tasks at the same time, whereas, the Multithreading allows multiple threads of a single
task (program, process) to be processed by CPU at the same time.

A thread is a basic execution unit which has its own program counter, set of the register
and stack. But it shares the code, data, and file of the process to which it belongs. A process
can have multiple threads simultaneously, and the CPU switches among these threads so fre-
quently making an impression on the user that all threads are running simultaneously.

Figure: Multithreading

Benefits of Multithreading
Multithreading increases the •	 responsiveness of system as, if one thread of the
application is not responding, the other would respond in that sense the user would
not have to sit idle.

Multithreading allows •	 resource sharing as threads belonging to the same process can
share code and data of the process and it allows a process to have multiple threads at
the same time active in same address space.

Creating a different process is costlier as the system has to allocate different memory •	
and resources to each process, but creating threads is easy as it does not require
allocating separate memory and resources for threads of the same process.

4.2 thread lifeCyCle
A thread in Java at any point of time exists in any one of the following states. A thread lies

only in one of the shown states at any instant:

New1)

Runnable2)

Blocked3)

Waiting4)

Timed Waiting5)

Terminated6)

The following figure represents various states of a thread at any instant of time:

Figure: Life Cycle of a thread

1. New Thread:
When a new thread is created, it is in the new state. •	

The thread has not yet started to run when thread is in this state. •	

When a thread lies in the new state, it’s code is yet to be run and hasn’t started to •	
execute.

2. Runnable State:
A thread that is ready to run is moved to runnable state. •	

In this state, a thread might actually be running or it might be ready run at any instant •	
of time.

It is the responsibility of the thread scheduler to give the thread, time to run.•	

A multi-threaded program allocates a fixed amount of time to each individual thread. •	
Each and every thread runs for a short while and then pauses and relinquishes the CPU
to another thread, so that other threads can get a chance to run. When this happens,
all such threads that are ready to run, waiting for the CPU and the currently running
thread lies in runnable state.

3. Blocked/Waiting state:
When a thread is temporarily inactive, then it’s in one of the following states:•	

Blocked ○

Waiting ○

For example, when a thread is waiting for I/O to complete, it lies in the blocked state. •	
It’s the responsibility of the thread scheduler to reactivate and schedule a blocked/
waiting thread.

A thread in this state cannot continue its execution any further until it is moved to •	
runnable state. Any thread in these states do not consume any CPU cycle.

A thread is in the blocked state when it tries to access a protected section of code that •	
is currently locked by some other thread. When the protected section is unlocked, the
schedule picks one of the threads which is blocked for that section and moves it to
the runnable state. A thread is in the waiting state when it waits for another thread on
a condition. When this condition is fulfilled, the scheduler is notified and the waiting
thread is moved to runnable state.

If a currently running thread is moved to blocked/waiting state, another thread in the •	
runnable state is scheduled by the thread scheduler to run. It is the responsibility of
thread scheduler to determine which thread to run.

4. Timed Waiting:
A thread lies in timed waiting state when it calls a method with a time out parameter. •	

A thread lies in this state until the timeout is completed or until a notification is •	
received.

For example, when a thread calls sleep or a conditional wait, it is moved to timed •	
waiting state.

5. Terminated State:
A thread terminates because of either of the following reasons:•	

Because it exits normally. This happens when the code of thread has entirely ○
executed by the program.

Because there occurred some unusual erroneous event, like segmentation fault ○
or an unhandled exception.

A thread that lies in terminated state does no longer consumes any cycles of CPU.•	

Creating threads
Threading is a facility to allow multiple tasks to run concurrently within a single •	
process. Threads are independent, concurrent execution through a program, and each
thread has its own stack.

In Java, There are two ways to create a thread:

1) By extending Thread class.

2) By implementing Runnable interface.

Java Thread Benefits
Java Threads are lightweight compared to processes as they take less time and re-1.
source to create a thread.

Threads share their parent process data and code2.

Context switching between threads is usually less expensive than between process-3.
es.

Thread intercommunication is relatively easy than process communication.4.

thread class:
Thread class provide constructors and methods to create and perform operations on a

thread. Thread class extends Object class and implements Runnable interface.

Commonly used Constructors of thread class:
Thread()•	

Thread(String name)•	

Thread(Runnable r)•	

Thread(Runnable r, String name)•	

Commonly used methods of thread class:
public void run(): 1. is used to perform action for a thread.

public void start(): 2. starts the execution of the thread. JVM calls the run() method on
the thread.

public void sleep(long miliseconds): 3. Causes the currently executing thread to sleep
(temporarily cease execution) for the specified number of milliseconds.

public void join(): 4. waits for a thread to die.

public void join(long miliseconds): 5. waits for a thread to die for the specified mili-
seconds.

public int getPriority(): 6. returns the priority of the thread.

public int setPriority(int priority): 7. changes the priority of the thread.

public string getname(): 8. returns the name of the thread.

public void setname(string name): 9. changes the name of the thread.

public thread currentthread(): 10. returns the reference of currently executing
thread.

public int getid(): 11. returns the id of the thread.

public thread.state getstate(): 12. returns the state of the thread.

public boolean isalive(): 13. tests if the thread is alive.

public void yield(): 14. causes the currently executing thread object to temporarily pause
and allow other threads to execute.

public void suspend(): 15. is used to suspend the thread(depricated).

public void resume(): 16. is used to resume the suspended thread(depricated).

public void stop(): 17. is used to stop the thread(depricated).

public boolean isdaemon(): 18. tests if the thread is a daemon thread.

public void setdaemon(boolean b): 19. marks the thread as daemon or user thread.

public void interrupt(): 20. interrupts the thread.

public boolean isinterrupted(): 21. tests if the thread has been interrupted.

public static boolean interrupted(): 22. tests if the current thread has been interrupted.

naming thread
The Thread class provides methods to change and get the name of a thread. By default,

each thread has a name i.e. thread-0, thread-1 and so on. But we can change the name of the
thread by using setName() method. The syntax of setName() and getName() methods are
given below:

public string getname(): is used to return the name of a thread.

public void setname(string name): is used to change the name of a thread.

extending thread

The first way to create a thread is to create a new class that extends Thread, and then to
create an instance of that class. The extending class must override the run() method, which
is the entry point for the new thread. It must also call start() to begin execution of the new
thread.

Sample java program that creates a new thread by extending Thread:
// Create a second thread by extending Thread

class NewThread extends Thread

{

 NewThread()

 { // Create a new, second thread

 super(“Demo Thread”);

 System.out.println(“Child thread: “ + this);

 start(); // Start the thread

 }

 // This is the entry point for the second thread.

 public void run()

 {

 try

 {

 for(int i = 5; i > 0; i--)

 {

 System.out.println(“Child Thread: “ + i);

 Thread.sleep(500);

 }

 }

 catch (InterruptedException e)

 {

 System.out.println(“Child interrupted.”);

 }

 System.out.println(“Child thread is exiting”);

 }

}

public class ExtendThread

{

 public static void main(String args[])

 {

 new NewThread(); // create a new thread

 try

 {

 for(int i = 5; i > 0; i--)

 {

 System.out.println(“Main Thread: “ + i);

 Thread.sleep(1000);

 }

 }

 catch (InterruptedException e)

 {

 System.out.println(“Main thread interrupted.”);

 }

 System.out.println(“Main thread is exiting.”);

 }

 }

Sample Output:
(output may vary based on processor speed and task load)

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Child thread is exiting.

Main Thread: 2

Main Thread: 1

Main thread is exiting.

The child thread is created by instantiating an object of NewThread, which is derived
from Thread. The call to super() is inside NewThread. This invokes the following form of
the Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

implementing runnable
The easiest way to create a thread is to create a class that implements the Runnable •	
interface.

Runnable abstracts a unit of executable code. We can construct a thread on any object •	
that implements Runnable.

To implement Runnable, a class need only implement a single method called run(), •	
which is declared as:

 public void run()

Inside run(), we will define the code that constitutes the new thread. The run() •	
can call other methods, use other classes, and declare variables, just like the main
thread can. The only difference is that run() establishes the entry point for another,
concurrent thread of execution within the program. This thread will end when run()
returns.

After we create a class that implements Runnable, we will instantiate an object of •	
type Thread from within that class.

After the new thread is created, it will not start running until we call its start() method, •	
which is declared within Thread. In essence, start() executes a call to run().

The start() method is shown as: •	

 void start()

Sample java program that creates a new thread by implementing Runnable:
// Create a second thread

class NewThread implements Runnable

{

 Thread t;

 NewThread()

 {

 // Create a new, second thread

 t = new Thread(this, “Demo Thread”);

 System.out.println(“Child thread: “ + t);

 t.start(); // Start the thread

 }

// This is the entry point for the second thread.

 public void run()

 {

 try

 {

 for(int i = 5; i > 0; i--)

 {

 System.out.println(“Child Thread: “ + i);

 Thread.sleep(500);

 }

 }

 catch (InterruptedException e)

 {

 System.out.println(“Child interrupted.”);

 }

 System.out.println(“Child thread is exiting.”);

 }

}

public class ThreadDemo

{

 public static void main(String args[])

 {

 new NewThread(); // create a new thread

 try

 {

 for(int i = 5; i > 0; i--)

 {

 System.out.println(“Main Thread: “ + i);

 Thread.sleep(1000);

 }

 }

 catch (InterruptedException e)

 {

 System.out.println(“Main thread interrupted.”);

 }

 System.out.println(“Main thread is exiting.”);

 }

}

Inside NewThread’s constructor, a new Thread object is created by the following
statement:

 t = new Thread(this, “Demo Thread”);

Passing this as the first argument indicates that we want the new thread to call the run()
method on this object. Next, start() is called, which starts the thread of execution beginning
at the run() method. This causes the child thread’s for loop to begin. After calling start(),
NewThread’s constructor returns to main(). When the main thread resumes, it enters its for
loop. Both threads continue running, sharing the CPU, until their loops finish.

Sample Output:

(output may vary based on processor speed and task load)

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Child thread is exiting.

Main Thread: 2

Main Thread: 1

Main thread is exiting.

In a multithreaded program, often the main thread must be the last thread to finish run-
ning. In fact, for some older JVMs, if the main thread finishes before a child thread has
completed, then the Java run-time system may “hang.” The preceding program ensures that
the main thread finishes last, because the main thread sleeps for 1,000 milliseconds between
iterations, but the child thread sleeps for only 500 milliseconds. This causes the child thread
to terminate earlier than the main thread.

Choosing an approach
The Thread class defines several methods that can be overridden by a derived class. Of

these methods, the only one that must be overridden is run(). This is, of course, the same
method required when we implement Runnable. Many Java programmers feel that classes
should be extended only when they are being enhanced or modified in some way. So, if we
will not be overriding any of Thread’s other methods, it is probably best simply to implement
Runnable.

Creating Multiple threads

The following program creates three child threads:

// Create multiple threads.

class NewThread implements Runnable

{

 String name; // name of thread

 Thread t;

 NewThread(String threadname)

 {

 name = threadname;

 t = new Thread(this, name);

 System.out.println(“New thread: “ + t);

 t.start(); // Start the thread

 }

 // This is the entry point for thread.

 public void run()

 {

 try

 {

 for(int i = 5; i > 0; i--)

 {

 System.out.println(name + “: “ + i);

 Thread.sleep(1000);

 }

 }

 catch (InterruptedException e)

 {

 System.out.println(name + “Interrupted”);

 }

 System.out.println(name + “ exiting.”);

 }

}

public class MultiThreadDemo

{

 public static void main(String args[])

 {

 new NewThread(“One”); // start threads

 new NewThread(“Two”);

 new NewThread(“Three”);

 try

 {

 // wait for other threads to end

 Thread.sleep(10000);

 }

 catch (InterruptedException e)

 {

 System.out.println(“Main thread Interrupted”);

 }

 System.out.println(“Main thread exiting.”);

 }

}

The output from this program is shown here:
New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

New thread: Thread[Three,5,main]

One: 5

 Two: 5

Three: 5

One: 4

Two: 4

 Three: 4

One: 3

Three: 3

Two: 3

One: 2

Three: 2

Two: 2

One: 1

Three: 1

Two: 1

One exiting.

Two exiting.

Three exiting.

Main thread exiting.

As we can see, once started, all three child threads share the CPU. The call to sleep(10000)
in main(). This causes the main thread to sleep for ten seconds and ensures that it will finish
last.

using isalive() and join()
We want the main thread to finish last. In the preceding examples, this is accomplished

by calling sleep() within main(), with a long enough delay to ensure that all child threads
terminate prior to the main thread. However, this is hardly a satisfactory solution, and it also
raises a larger question: How can one thread know when another thread has ended?

Two ways exist to determine whether a thread has finished or not.

First, we can call isAlive() on the thread. This method is defined by Thread.•	

Syntax:
 final boolean isAlive()

The isAlive() method returns true, if the thread upon which it is called is still running. It
returns false, otherwise.

Second, we can use join() to wait for a thread to finish.•	

Syntax:
 final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from
the concept of the calling thread waiting until the specified thread joins it.

Sample Java program using join() to wait for threads to finish.
class NewThread implements Runnable

{

 String name; // name of thread

 Thread t;

 NewThread(String threadname)

 {

 name = threadname;

 t = new Thread(this, name);

 System.out.println(“New thread: “ + t);

 t.start(); // Start the thread

 }

 // This is the entry point for thread.

 public void run()

 {

 try

 {

 for(int i = 5; i > 0; i--)

 {

 System.out.println(name + “: “ + i);

 Thread.sleep(1000);

 }

 }

 catch (InterruptedException e)

 {

 System.out.println(name + “ interrupted.”);

 }

 System.out.println(name + “ is exiting.”);

 }

}

public class DemoJoin

{

 public static void main(String args[])

 {

 NewThread ob1 = new NewThread(“One”);

 NewThread ob2 = new NewThread(“Two”);

 NewThread ob3 = new NewThread(“Three”);

 System.out.println(“Thread One is alive: “ + ob1.t.isAlive());

 System.out.println(“Thread Two is alive: “ + ob2.t.isAlive());

 System.out.println(“Thread Three is alive: “ + ob3.t.isAlive());

 // wait for threads to finish

 try

 {

 System.out.println(“Waiting for threads to finish.”);

 ob1.t.join();

 ob2.t.join();

 ob3.t.join();

 }

 catch (InterruptedException e)

 {

 System.out.println(“Main thread Interrupted”);

 }

 System.out.println(“Thread One is alive: “ + ob1.t.isAlive());

 System.out.println(“Thread Two is alive: “ + ob2.t.isAlive());

 System.out.println(“Thread Three is alive: “ + ob3.t.isAlive());

 System.out.println(“Main thread is exiting.”);

 }

}

sample output:
(output may vary based on processor speed and task load)

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

One: 5

New thread: Thread[Three,5,main]

Two: 5

Thread One is alive: true

Thread Two is alive: true

Thread Three is alive: true

Waiting for threads to finish.

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Two: 3

Three: 3

One: 2

Two: 2

Three: 2

One: 1

Two: 1

Three: 1

One is exiting.

Two is exiting.

Three is exiting.

Thread One is alive: false

Thread Two is alive: false

Thread Three is alive: false

Main thread is exiting.

As we can see, after the calls to join() return, the threads have stopped executing.

4.3 synChronization
Synchronization in java is the capability •	 to control the access of multiple threads to
any shared resource.

Java Synchronization is better option where we want to allow only one thread to •	
access the shared resource.

When two or more threads need access to a shared resource, they need some way to •	
ensure that the resource will be used by only one thread at a time. The process by
which this is achieved is called synchronization. Java provides unique, language-
level support for it.

Key to synchronization is the concept of the monitor (also called a semaphore). •	

A monitor is an object that is used as a mutually exclusive lock, or mutex. Only one •	
thread can own a monitor at a given time. When a thread acquires a lock, it is said
to have entered the monitor. All other threads attempting to enter the locked monitor
will be suspended until the first thread exits the monitor.

These other threads are said to be waiting for the monitor. A thread that owns a monitor •	
can reenter the same monitor if it so desires.

Approaches:•	

Using synchronized Method ○

Using synchronized Statement ○

using synchronized Methods
Synchronization is easy in Java, because all objects have their own implicit monitor as-

sociated with them.

To enter an object’s monitor, just call a method that has been modified with the synchro-
nized keyword.

While a thread is inside a synchronized method, all other threads that try to call it (or any
other synchronized method) on the same instance have to wait.

To exit the monitor and relinquish control of the object to the next waiting thread, the
owner of the monitor simply returns from the synchronized method.

To understand the need for synchronization, we will consider a simple example that •	
does not use it—but should.

The following program has three simple classes. •	

The first one, Callme, has a single method named call(). The call() method takes a •	
String parameter called msg. This method tries to print the msg string inside of square
brackets. After call() prints the opening bracket and the msg string, it calls Thread.

sleep(1000), which pauses the current thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme •	
class and a String, which are stored in target and msg, respectively. The constructor
also creates a new thread that will call this object’s run() method. The thread is
started immediately. The run() method of Caller calls the call() method on the target
instance of Callme, passing in the msg string.

Finally, the Synch class starts by creating a single instance of Callme, and three •	
instances of Caller, each with a unique message string.

The same instance of Callme is passed to each Caller.•	

// This program is not synchronized.
class Callme

{

 void call(String msg)

 {

 System.out.print(“[“ + msg);

 try

 {

 Thread.sleep(1000);

 }

 catch(InterruptedException e)

 {

 System.out.println(“Interrupted”);

 }

 System.out.println(“]”);

 }

}

class Caller implements Runnable

{

 String msg;

 Callme target;

 Thread t;

 public Caller(Callme targ, String s)

 {

 target = targ;

 msg = s;

 t = new Thread(this);

 t.start();

 }

 public void run()

 {

 target.call(msg);

 }

}

public class Synch

{

 public static void main(String args[])

 {

 Callme target = new Callme();

 Caller ob1 = new Caller(target, “Hello”);

 Caller ob2 = new Caller(target, “Synchronized”);

 Caller ob3 = new Caller(target, “World”);

 // wait for threads to end

 try

 {

 ob1.t.join();

 ob2.t.join();

 ob3.t.join();

 }

 catch(InterruptedException e)

 {

 System.out.println(“Interrupted”);

 }

 }

}

Sample Output:
Hello[Synchronized[World]

]

]

As we can see, by calling sleep(), the call() method allows execution to switch to another
thread. This results in the mixed-up output of the three message strings.

In this program, nothing exists to stop all three threads from calling the same method, on
the same object, at the same time. This is known as a race condition, because the three threads
are racing each other to complete the method.

This example used sleep() to make the effects repeatable and obvious. In most situations,
a race condition is more subtle and less predictable, because we can’t be sure when the con-
text switch will occur. This can cause a program to run right one time and wrong the next.

To fix the preceding program, we must serialize access to call(). That is, we must restrict
its access to only one thread at a time. To do this, we simply need to precede call()’s definition
with the keyword synchronized, as shown here:

This prevents other threads from entering call() while another thread is using it.

class Callme

{

synchronized void call(String msg)

{

 ...

Following is the sample java program after synchronized has been added to call():
class Callme

{

 synchronized void call(String msg)

 {

 System.out.print(“[“ + msg);

 try

 {

 Thread.sleep(1000);

 }

 catch(InterruptedException e)

 {

 System.out.println(“Interrupted”);

 }

 System.out.println(“]”);

 }

}

class Caller implements Runnable

{

 String msg;

 Callme target;

 Thread t;

 public Caller(Callme targ, String s)

 {

 target = targ;

 msg = s;

 t = new Thread(this);

 t.start();

 }

 public void run()

 {

 target.call(msg);

 }

}

public class Synch

{

 public static void main(String args[])

 {

 Callme target = new Callme();

 Caller ob1 = new Caller(target, “Hello”);

 Caller ob2 = new Caller(target, “Synchronized”);

 Caller ob3 = new Caller(target, “World”);

 // wait for threads to end

 try

 {

 ob1.t.join();

 ob2.t.join();

 ob3.t.join();

 }

 catch(InterruptedException e)

 {

 System.out.println(“Interrupted”);

 }

 }

}

Output:
 [Hello]

[Synchronized]

[World]

using synchronized statement

While creating synchronized methods within classes that we create is an easy and effec-
tive means of achieving synchronization, it will not work in all cases. We have to put calls to
the methods defined by the class inside a synchronized block.

Syntax:

synchronized(object)

 {

// statements to be synchronized

 }

 Here, object is a reference to the object being synchronized. A synchronized block en-
sures that a call to a method that is a member of object occurs only after the current thread has
successfully entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block with-
in the run() method:

// This program uses a synchronized block.
class Callme

{

 void call(String msg)

 {

 System.out.print(“[“ + msg);

 try

 {

 Thread.sleep(1000);

 }

 catch (InterruptedException e)

 {

 System.out.println(“Interrupted”);

 }

 System.out.println(“]”);

 }

}

class Caller implements Runnable

{

 String msg;

 Callme target;

 Thread t;

 public Caller(Callme targ, String s)

 {

 target = targ;

 msg = s;

 t = new Thread(this);

 t.start();

 }

 // synchronize calls to call()

 public void run()

 {

 synchronized(target)

 {

 // synchronized block

 target.call(msg);

 }

 }

}

public class Synch1

{

 public static void main(String args[])

 {

 Callme target = new Callme();

 Caller ob1 = new Caller(target, “Hello”);

 Caller ob2 = new Caller(target, “Synchronized”);

 Caller ob3 = new Caller(target, “World”);

 // wait for threads to end

 try

 {

 ob1.t.join();

 ob2.t.join();

 ob3.t.join();

 }

 catch(InterruptedException e)

 {

 System.out.println(“Interrupted”);

 }

 }

}

Here, the call() method is not modified by synchronized. Instead, the synchronized state-
ment is used inside Caller’s run() method. This causes the same correct output as the preced-
ing example, because each thread waits for the prior one to finish before proceeding.

Sample Output:
[Hello]

[World]

[Synchronized]

Priority of a thread (thread Priority):
Each thread has a priority. Priorities are represented by a number between 1 and 10. In

most cases, thread schedular schedules the threads according to their priority (known as pre-
emptive scheduling). But it is not guaranteed because it depends on JVM specification that
which scheduling it chooses.

3 constants defined in Thread class:

public static int MIN_PRIORITY1.

public static int NORM_PRIORITY2.

public static int MAX_PRIORITY3.

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is
1 and the value of MAX_PRIORITY is 10.

sample Java Program:
public class TestMultiPriority1 extends Thread

{

 public void run()

 {

 System.out.println(“running thread name is:”+Thread.currentThread().getName());

 System.out.println(“running thread priority is:”+Thread.currentThread().getPriority());

 }

 public static void main(String args[])

 {

 TestMultiPriority1 m1=new TestMultiPriority1();

 TestMultiPriority1 m2=new TestMultiPriority1();

 m1.setPriority(Thread.MIN_PRIORITY);

 m2.setPriority(Thread.MAX_PRIORITY);

 m1.start();

 m2.start();

 }

}

Output:
 running thread name is:Thread-0

 running thread priority is:10

 running thread name is:Thread-1

 running thread priority is:1

4.4 inter-thread CoMMuniCation
Inter-process communication (IPC) is a mechanism that allows the exchange of data be-

tween processes. By providing a user with a set of programming interfaces, IPC helps a
programmer organize the activities among different processes. IPC allows one application to
control another application, thereby enabling data sharing without interference.

IPC enables data communication by allowing processes to use segments, semaphores, and
other methods to share memory and information. IPC facilitates efficient message transfer
between processes. The idea of IPC is based on Task Control Architecture (TCA). It is a flex-
ible technique that can send and receive variable length arrays, data structures, and lists. It
has the capability of using publish/subscribe and client/server data-transfer paradigms while
supporting a wide range of operating systems and languages.

Inter-thread communication or Co-operation is all about allowing synchronized threads to
communicate with each other. Interthread communication is important when you develop an
application where two or more threads exchange some information.

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused
running in its critical section and another thread is allowed to enter (or lock) in the same criti-
cal section to be executed. It is implemented by following methods of Object class:

wait()•	

notify()•	

notifyAll()•	

All these methods belong to object class as final so that all classes have them. They must
be used within a synchronized block only.

1) wait() method
Causes current thread to release the lock and wait until either another thread invokes the

notify() method or the notifyAll() method for this object, or a specified amount of time has
elapsed. The current thread must own this object’s monitor, so it must be called from the syn-
chronized method only otherwise it will throw exception.

2) notify() method

Wakes up a single thread that is waiting on this object’s monitor. If any threads are waiting
on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the
discretion of the implementation. Syntax:

 public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object’s monitor. Syntax:

 public final void notifyAll()

// Java program to demonstrate inter-thread communication (wait(), join() and notify()) in
Java

import java.util.Scanner;

public class Thread_Example

{

 public static void main(String[] args) throws InterruptedException

 {

 final Producer_Consumer pc = new Producer_Consumer ();

 Thread t1 = new Thread(new Runnable()

 {

 public void run()

 {

 try

 {

 pc.producer();

 }

 catch(InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 });

 Thread t2 = new Thread(new Runnable()

 {

 public void run()

 {

 try

 {

 pc.consumer();

 }

 catch(InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 });

 t1.start();

 t2.start();

 t1.join();

 t2.join();

 }

 public static class Producer_Consumer

 {

 public void producer()throws InterruptedException

 {

 synchronized(this)

 {

 System.out.println(“producer thread running”);

 wait();

 System.out.println(“Resumed”);

 }

 }

 public void consumer()throws InterruptedException

 {

 Thread.sleep(1000);

 Scanner ip = new Scanner(System.in);

 synchronized(this)

 {

 System.out.println(“Waiting for return key.”);

 ip.nextLine();

 System.out.println(“Return key pressed”);

 notify();

 Thread.sleep(1000);

 }

 }

 }

}

The following statements explain how the above producer-Consumer program works.

The use of synchronized block ensures that only one thread at a time runs. Also since •	
there is a sleep method just at the beginning of consumer loop, the produce thread
gets a kickstart.

When the wait is called in producer method, it does two things. •	

it releases the lock it holds on PC object. 1.

it makes the produce thread to go on a waiting state until all other threads have 2.
terminated, that is it can again acquire a lock on PC object and some other
method wakes it up by invoking notify or notifyAll on the same object.

Therefore we see that as soon as wait is called, the control transfers to consume thread •	
and it prints -“Waiting for return key”.

After we press the return key, consume method invokes notify(). It also does 2 things- •	
Firstly, unlike wait(), it does not releases the lock on shared resource therefore for
getting the desired result, it is advised to use notify only at the end of your method.
Secondly, it notifies the waiting threads that now they can wake up but only after the
current method terminates.

As you might have observed that even after notifying, the control does not immediately •	
passes over to the produce thread. The reason for it being that we have called Thread.
sleep() after notify(). As we already know that the consume thread is holding a lock
on PC object, another thread cannot access it until it has released the lock. Hence only
after the consume thread finishes its sleep time and thereafter terminates by itself, the
produce thread cannot take back the control.

After a 2 second pause, the program terminates to its completion.•	

The following program is one more example for interthread communication•	

class InterThread_Example

{

 public static void main(String arg[])

 {

 final Client c = new Client();

 new Thread()

 {

 public void run()

 {

 c.withdraw(15000);

 }

 }.start();

 new Thread()

 {

 public void run()

 {

 c.deposit(10000);

 }

 }.start();

 new Thread()

 {

 public void run()

 {

 c.deposit(10000);

 }

 }.start();

 }

}

class Client

{

 int amount = 10000;

 synchronized void withdraw(int amount)

 {

 System.out.println(“Available Balance “ + this. amount);

 System.out.println(“withdrawal amount.” + amount);

 if (this.amount < amount)

 {

 System.out.println(“Insufficient Balance waiting for deposit.”);

 try

 {

 wait();

 } catch (Exception e)

 {

 System.out.println(“Interruption Occured”);

 }

 }

 this.amount -= amount;

 System.out.println(“Detected amount: “ + amount);

 System.out.println(“Balance amount : “ + this.amount);

 }

 synchronized void deposit(int amount)

 {

 System.out.println(“Going to deposit “ + amount);

 this.amount += amount;

 System.out.println(“Available Balance “ + this.amount);

 System.out.println(“Transaction completed.\n”);

 notify();

 }

}

4.5 daeMon thread
Daemon thread is a low priority thread that runs in background to perform tasks such as

garbage collection. Daemon thread in java is a service provider thread that provides services
to the user thread. Its life depend on the mercy of user threads i.e. when all the user threads
dies, JVM terminates this thread automatically.

There are many java daemon threads running automatically e.g. gc, finalizer etc.

It provides services to user threads for background supporting tasks. It has no role in •	
life than to serve user threads.

Its life depends on user threads.•	

It is a low priority thread.•	

The command jconsole typed in the command prompt provides information about the
loaded classes, memory usage, running threads etc.

The purpose of the daemon thread is that it provides services to user thread for back-
ground supporting task. If there is no user thread, why should JVM keep running this thread.
That is why JVM terminates the daemon thread if there is no user thread.

Properties:
They cannot prevent the JVM from exiting when all the user threads finish their •	
execution.

JVM terminates itself when all user threads finish their execution•	

If JVM finds running daemon thread, it terminates the thread and after that shutdown •	
itself. JVM does not care whether Daemon thread is running or not.

It is an utmost low priority thread.•	

Methods for Java daemon thread by thread class
The java.lang.Thread class provides two methods for java daemon thread.

Method description
public void setDaemon(boolean status) used to mark the current thread as daemon

thread or user thread.
public boolean isDaemon() used to check that current is daemon.

// Java program to demonstrate the usage of setDaemon() and isDaemon() method.

public class DaemonThread extends Thread

{

 public void run()

 {

 // Checking whether the thread is Daemon or not

 if(Thread.currentThread().isDaemon())

 {

 System.out.println(“This is Daemon thread”);

 }

 else

 {

 System.out.println(“This is User thread”);

 }

 }

 public static void main(String[] args)

 {

 DaemonThread t1 = new DaemonThread();

 DaemonThread t2 = new DaemonThread();

 DaemonThread t3 = new DaemonThread();

 // Setting user thread t1 to Daemon

 t1.setDaemon(true);

 // starting all the threads

 t1.start();

 t2.start();

 t3.start();

 // Setting user thread t3 to Daemon

 t3.setDaemon(true);

 }

}

Output:
This is Daemon thread

This is User thread

This is Daemon thread

// Java program to demonstrate the usage of exception in Daemon() Thread
public class DaemonThread extends Thread

{

 public void run()

 {

System.out.println(“Thread name: “ + Thread.currentThread().getName());

 System.out.println(“Check if its DaemonThread: “

 + Thread.currentThread().isDaemon());

 }

 public static void main(String[] args)

 {

 DaemonThread t1 = new DaemonThread();

 DaemonThread t2 = new DaemonThread();

 t1.start();

 // Exception as the thread is already started

 t1.setDaemon(true);

 t2.start();

 }

}

Output:
Thread name: Thread-0

Check if its DaemonThread: false

daemon vs user threads
Priority:•	 When the only remaining threads in a process are daemon threads, the
interpreter exits. This makes sense because when only daemon threads remain, there
is no other thread for which a daemon thread can provide a service.

usage:•	 Daemon thread is to provide services to user thread for background supporting
task.

The following program is an example for daemon thread.
public class DaemonThread_example extends Thread{

 public void run(){

 if(Thread.currentThread().isDaemon()){//checking for daemon thread

 System.out.println(“daemon thread work”);

 }

 else{

 System.out.println(“user thread work”);

 }

 }

 public static void main(String[] args){

 TestDaemonThread1 t1=new TestDaemonThread1();//creating thread

 TestDaemonThread1 t2=new TestDaemonThread1();

 TestDaemonThread1 t3=new TestDaemonThread1();

 t1.setDaemon(true);//now t1 is daemon thread

 t1.start();//starting threads

 t2.start();

 t3.start();

 }

}

The following program is another example for daemon thread.
class DaemonThread1_example extends Thread{

 public void run(){

 System.out.println(“Name: “+Thread.currentThread().getName());

 System.out.println(“Daemon: “+Thread.currentThread().isDaemon());

 }

 public static void main(String[] args){

 TestDaemonThread2 t1=new TestDaemonThread2();

 TestDaemonThread2 t2=new TestDaemonThread2();

 t1.start();

 t1.setDaemon(true);//will throw exception here

 t2.start();

 }

}

4.6 thread grouP in Java
Java provides a convenient way to group multiple threads in a single object. In such way,

we can suspend, resume or interrupt group of threads by a single method call. ThreadGroup
creates a group of threads. It offers a convenient way to manage groups of threads as a unit.
This is particularly valuable in situation in which you want to suspend and resume a number
of related threads.

The thread group form a tree in which every thread group except the initial thread •	
group has a parent.

A thread is allowed to access information about its own thread group but not to access •	
information about its thread group’s parent thread group or any other thread group.

Constructors of threadgroup class
There are only two constructors of ThreadGroup class.

Constructor description
Thread Group (String name) creates a thread group with given name.
Thread Group (ThreadGroup parent,
String name)

creates a thread group with given parent group
and name.

The following program is an example for ThreadGroup
public class ThreadGroup_example implements Runnable{

 public void run() {

 System.out.println(Thread.currentThread().getName());

 }

 public static void main(String[] args) {

 ThreadGroup_example runnable = new ThreadGroup_example();

 ThreadGroup tg1 = new ThreadGroup(“Parent ThreadGroup”);

 Thread t1 = new Thread(tg1, runnable,”one”);

 t1.start();

 Thread t2 = new Thread(tg1, runnable,”two”);

 t2.start();

 Thread t3 = new Thread(tg1, runnable,”three”);

 t3.start();

 System.out.println(“Thread Group Name: “+tg1.getName());

 tg1.list();

 }

 }

Sample Output:
one

two

three

Thread Group Name: Parent ThreadGroup

java.lang.ThreadGroup[name=Parent ThreadGroup,maxpri=10]

 Thread [one,5,Parent ThreadGroup]

 Thread [two,5,Parent ThreadGroup]

 Thread [three,5,Parent ThreadGroup]

Methods of threadgroup class
There are many methods in ThreadGroup class. A list of important methods are given

below.

Method description

int activeCount() returns no. of threads running in current group.

int activeGroupCount() returns a no. of active group in this thread group.

void destroy() destroys this thread group and all its sub groups.

String getName() returns the name of this group.

ThreadGroup getParent() returns the parent of this group.

void interrupt() interrupts all threads of this group.

void list() prints information of this group to standard console.

The following programs explain the threadgroup example.
// Java code illustrating activeCount() method

import java.lang.*;

class NewThread extends Thread

{

 NewThread(String threadname, ThreadGroup tgob)

 {

 super(tgob, threadname);

 start();

 }

public void run()

 {

 for (int i = 0; i < 1000; i++)

 {

 try

 {

 Thread.sleep(10);

 }

 catch (InterruptedException ex)

 {

 System.out.println(“Exception encounterted”);

 }

 }

 }

}

public class ThreadGroup_example

{

 public static void main(String arg[])

 {

 // creating the thread group

 ThreadGroup gfg = new ThreadGroup(“parent thread group”);

 NewThread t1 = new NewThread(“one”, gfg);

 System.out.println(“Starting one”);

 NewThread t2 = new NewThread(“two”, gfg);

 System.out.println(“Starting two”);

 // checking the number of active thread

 System.out.println(“number of active thread: “

 + gfg.activeCount());

 }

}

Output:
Starting one

Starting two

number of active thread: 2

Event Driven Programming 5.1

EVENT DRIVEN PROGRAMMING

Java AWT
The Abstract Window Toolkit (AWT) is Java’s original platform-independent window-
ing, graphics, and user-interface widget toolkit. The AWT classes are contained in the
java.awt package.

Contains all of the classes for creating user interfaces and for painting graphics and •	
images.

an API to develop GUI or window-based applications•	 in java.

The hierarchy of Java AWT classes are shown below.

UNIT-5

Component
A component is an object having a graphical representation that can be displayed on the

screen and that can interact with the user.

Examples :

buttons, checkboxes, and scrollbars

The Component class is the abstract superclass of all user interface elements that are
displayed on the screen. A Component object remembers current text font, foreground and
background color.

Container
The Container class is the subclass of Component. The container object is a component

that can contain other AWT components. It is responsible for laying out any components that
it contains.

Window

The class Window is a top level window with no border and no menubar. The default lay-
out for a window is BorderLayout. A window must have either a frame, dialog, or another
window defined as its owner when it’s constructed.

Panel

The class Panel is the simplest container class. It provides space in which an application
can attach any other component, including other panels. The default layout manager for a
panel is the FlowLayout layout manager

Frame

A Frame is a top-level window with a title and a border. It uses BorderLayout as default
layout manager.

Dialog

A Dialog is a top-level window with a title and a border that is typically used to take some
form of input from the user.

Canvas

A Canvas component represents a blank rectangular area of the screen onto which the
application can draw or from which the application can trap input events from the user. An
application must subclass the Canvas class in order to get useful functionality such as creat-
ing a custom component. The paint method must be overridden in order to perform custom
graphics on the canvas. It is not a part of hierarchy of Java AWT.

java.awt.Graphics class

The java.awt.Graphics class provides many methods for graphics programming. A graph-
ics context is encapsulated by the Graphics class and is obtained in two ways:

It is passed to an applet when one of its various methods, such as paint() or •	
update() is called.

It is returned by the getGraphics() method of Component.•	

Graphics Methods
The commonly used methods of Graphics class are as follows.

Method Description
abstract Graphics create() Creates a new Graphics object that is a

copy of this Graphics object
abstract void drawString(String str, int
x, int y)

Draws the text given by the specified
string

void drawRect(int x, int y, int width, int
height)

draws a rectangle with the specified width
and height

void draw3DRect(int x, int y, int width,
int height, boolean raised)

Draws a 3-D highlighted outline of the
specified rectangle.

abstract void drawRoundRect(int x, int
y, int width, int height, int arcWidth, int
arcHeight)

Draws an outlined round-cornered rect-
angle using this graphics context’s current
color

abstract void fillRect(int x, int y, int
width, int height)

fill rectangle with the default color and
specified width and height.

abstract void drawPolygon(int[] xPoints,
int[] yPoints, int nPoints)

Draws a closed polygon defined by arrays
of x and y coordinates.

abstract void fillPolygon(int[] xPoints,
int[] yPoints, int nPoints)

Fills a closed polygon defined by arrays of
x and y coordinates.

abstract void drawOval(int x, int y, int
width, int height)

draw oval with the specified width and
height.

abstract void fillOval(int x, int y, int
width, int height)

fill oval with the default color and speci-
fied width and height.

abstract void drawLine(int x1, int y1, int
x2, int y2)

draw line between the points(x1, y1) and
(x2, y2).

abstract boolean drawImage(Image img,
int x, int y, ImageObserver observer)

draw the specified image.

abstract void drawArc(int x, int y, int
width, int height, int startAngle, int arc
Angle)

draw a circular or elliptical arc.

abstract void fillArc(int x, int y, int width,
int height, int startAngle, int arcAngle)

fill a circular or elliptical arc.

abstract void setColor(Color c) set the graphics current color to the speci-
fied color.

abstract void setFont(Font font) set the graphics current font to the speci-
fied font.

Example:
GraphicsDemo.java

import java.applet.Applet;

import java.awt.*;

public class GraphicsDemo extends Applet{

public void paint(Graphics g){

g.setColor(Color.red); // set font color

g.drawString(“Welcome”,50, 50); // display text

g.drawLine(120,120,200,300); // draw a line

// draw and fill rectangle

g.drawRect(170,100,60,50);

g.fillRect(170,100,60,50);

// draw and fill rounded rectangle

g.drawRoundRect(190, 10, 60, 50, 15, 15);

g.fillRoundRect(190, 10, 60, 50, 15, 15);

// draw and fill oval

g.drawOval(70,200,50,50);

g.setColor(Color.green);

g.fillOval(170,200,50,50);

// draw and fill arc

g.drawArc(90,150,70,70,0,75);

g.fillArc(270,150,70,70,0,75);

// draw a polygon

int xpoints[] = {30, 200, 30, 200, 30};

int ypoints[] = {30, 30, 200, 200, 30};

int num = 5;

g.drawPolygon(xpoints, ypoints, num);

}

}

Test.html

<html>

<body>

<applet code=”GraphicsDemo4.class” width=”300” height=”300”>

</applet>

</body>

</html>

Sample Output:

Note:
Steps to be followed to compile and run applet in DOS.

Compile the java file using javac command (for example, javac GraphicsDemo.1.
java).

Create a separate html file. Mention the name of the java class file in the applet code 2.
parameter (for example code=”GraphicsDemo.class”)

Run the html file using appletviewer command (for example, appletviewer test.html)3.

Frames
A Frame is a top-level window with a title and a border. Frames are capable of generating

the following types of window events: WindowOpened, WindowClosing, WindowClosed,
WindowIconified, WindowDeiconified, WindowActivated, WindowDeactivated.

Frame Constructor

Frame()
Constructs a new instance of Frame that is initially invisible.

Frame(String)
Constructs a new, initially invisible Frame object with the specified title.

Some of the commonly used methods of Frame class are as follows.

Methods Description
String getTitle() Gets the title of the frame.
void setBackground(Color bgColor) Sets the background color of this window.
void setResizable (boolean resizable) Sets whether this frame is resizable by the user.
void setShape (Shape shape) Sets the shape of the window.
void setTitle (String title) Sets the title for this frame to the specified

string.
void setSize (Dimension d) Resizes this component so that it has width d.

width and height d.height.
void setVisible(boolean b) Shows or hides this Window depending on the

value of parameter b.
public void show() Makes the Window visible
void setMenuBar (MenuBar) mb) Sets the menu bar for this frame to the specified

menu bar
Creating a Frame

We can generate a window by creating an instance of Frame. The created frame can be
made visible by calling setVisible(). When created, the window is given a default height and
width. The size of the window can be changed explicitly by calling the setSize() method. A

label can be added to the current frame by creating an Label instance and calling the add()
method.

Example:

import java.awt.*;

public class AwtFrame{

public static void main(String[] args){

Frame frm = new Frame(“Java AWT Frame”);

Label lbl = new Label(“Welcome”,Label.CENTER);

frm.add(lbl);

frm.setSize(400,400);

frm.setVisible(true);

 }

}

Sample Output:

Creating an Frame Window in an Applet
The steps to be followed to create a child frame within an applet are as follows.

Create a subclass of Frame1.

Override any of the standard window methods, such as init(),start(),stop(),and 2.
paint().

Implement the windowClosing() method of the windowListener interface,calling 3.
setVisible(false) when the window is closed

Once you have defined a Frame subclass, you can create an object of that class. But it 4.
will note be initially visible

When created, the window is given a default height and width5.

You can set the size of the window explicitly by calling the setSize() method6.

Example:
AppletFrame.java

// Create a child frame window from within an applet.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

// Create a subclass of Frame.

class SampleFrame extends Frame {

SampleFrame(String title) {

super(title);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

addWindowListener(adapter);

}

public void paint(Graphics g) {

g.drawString(“This is in frame window”, 10, 40);

}

}

class MyWindowAdapter extends WindowAdapter {

SampleFrame sampleFrame;

public MyWindowAdapter(SampleFrame sampleFrame) {

this.sampleFrame = sampleFrame;

}

public void windowClosing(WindowEvent we) {

sampleFrame.setVisible(false);

}

}

// Create frame window.

public class AppletFrame extends Applet {

Frame f;

//init(), start(), paint(), and stop() methods are called automatically in the specified se-
quence.

public void init() {

f = new SampleFrame(“A Frame Window”);

f.setSize(150, 150);

f.setVisible(true);

}

public void start() {

f.setVisible(true); // make the window visible

}

public void stop() {

f.setVisible(false); // hide the window

}

public void paint(Graphics g) {

g.drawString(“This is in applet window”, 15, 30); // Display the given text in the win-
dow

}

}

Test1.html

<html>

<body>

<applet code=”AppletFrame.class” width=”400” height=”300”>

</applet>

</body>

</html>

Sample Output:

Components
Java AWT Component classes exist in java.awt package. The Component class is a super

class of all components such as buttons, checkboxes, scrollbars, etc.

Component class constructor:

 Component() // constructs a new component

Properties of Java AWT Components:

A Component object represents a graphical interactive area displayable on the screen •	
that can be used by the user.

Any subclass of a Component class is known as a component. For example, button •	
is a component.

Only components can be added to a container, like frame.•	

Some of the commonly used methods of Component class are as follows.

Method Description
setBackground(Color) Sets the background color of this component.
setBounds(int, int, int, int) Moves and resizes this component.
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
setFont(Font) Sets the font of this component.
setForeground(Color) Sets the foreground color of this component.
setLocation(int, int) Moves this component to a new location.
setSize(int, int) Resizes this component so that it has width

width and height.
setVisible(boolean) Shows or hides this component depending on the

value of parameter b.
update(Graphics) Updates this component.
repaint() Repaints this component.
repaint(int, int, int, int) Repaints the specified rectangle of this component.
add(Component c) Inserts a component on this component.
remove(Component c) Removes the specified component from this

component.

Working with 2D shapes
Java supports 2-dimensional shapes, text and images using methods available in Graph-

ics2D class. The Graphics2D class extends the Graphics class to provide more sophisticated
control over geometry, coordinate transformations, color management, and text layout.

Graphics2D class Constructor

Graphics2D() //Constructs a new Graphics2D object.

This class inherits the methods from java.lang.Object. Some of the commonly used meth-
ods of Graphics2D class are as follows.

Method Description
void draw(Shape s) Strokes the outline of a Shape using the

settings of the current Graphics2D context
void draw3DRect(int x, int y, int width,
int height, boolean raised)

Draws a 3-D highlighted outline of the
specified rectangle.

void drawImage(BufferedImage img,
BufferedImageOp op, int x, int y)

Renders a BufferedImage that is filtered with
a BufferedImageOp.

boolean drawImage(Image img, Affine
Transform xform, ImageObserver obs)

Renders an image, applying a transform
from image space into user space before
drawing.

void drawString(String str, float x, float
y)

Renders the text specified by the specified
String, using the current text attribute state
in the Graphics2D context

void fill(Shape s) Fills the interior of a Shape using the
settings of the Graphics2D context.

void rotate(double theta) Concatenates the current Graphics2D
Transform with a rotation transform.

void scale(double sx, double sy) oncatenates the current Graphics2D
Transform with a scaling transformation
Subsequent rendering is resized according
to the specified scaling factors relative to the
previous scaling.

void setBackground(Color color) Sets the background color for the
Graphics2D context.

void setPaint(Paint paint) Sets the Paint attribute for the Graphics2D
context.

void setStroke(Stroke s) Sets the Stroke for the Graphics2D context.
void shear(double shx, double shy) Concatenates the current Graphics2D

Transform with a shearing transform.
void transform(AffineTransform Tx) Composes an AffineTransform object with

the Transform in this Graphics2D according
to the rulelast-specified-first-applied.

void translate(int x, int y) Translates the origin of the Graphics2D con-
text to the point (x, y) in the current coordi-
nate system.

Example:
import java.awt.*;

import java.applet.*;

/*

<applet code=”ShapesDemo” width=350 height=300>

</applet>

*/

public class ShapesDemo extends Applet {

public void init() {}

 public void paint(Graphics g) {

Graphics2D g2d = (Graphics2D)g;

g2d.setColor(Color.blue);

g2d.drawRect(75,75,300,200);

Font exFont = new Font(“TimesRoman”,Font.PLAIN,40);

g2d.setFont(exFont);

g2d.setColor(Color.black);

g2d.drawString(“Graphics2D Example”,120.0f,100.0f);

g2d.setColor(Color.green);

g2d.drawLine(100,100,300,200);

g2d.drawOval(150,150,100,200);

g2d.fillOval(150,150,100,200);

}

}

Sample Output:

Colors in Java
To support different colors Java package comes with the Color class. The Color class

states colors in the default sRGB color space or colors in arbitrary color spaces identified by
a ColorSpace.

Color class static color variables available are:

Color.black Color.lightGray
Color.blue Color.magenta
Color.cyan Color.orange
Color.darkGray Color.pink
Color.gray Color.red
Color.green Color.white
Color.yellow

Color class constructor
Color(float r, float g, float b) – create color with specified red, green, and blue values in

the range (0.0 - 1.0)

Color(int r, int g, int b)- create color with the specified red, green, and blue values in the
range (0 - 255).

Some of the commonly used methods supported by the Color class are as follows.

Method Description
int getRed() Returns the red component in the range 0-255 in the

default sRGB space.

int getGreen()

Returns the green component in the range 0-255 in the
default sRGB space.

int getBlue() Returns the blue component in the range 0-255 in the
default sRGB space.

Color getHSBColor(float h,
float s, float b)

Creates a Color object based on the specified values for
the HSB color model.

The current graphics color can be changed using setColor() method defined in Graphics
class.

 void setColor(Color newColor) // newColor indicates new drawing color

The current color detail can be obtained using getColor() method. Its syntax is.

 Color getColor()

Example:
import java.awt.*;

import java.applet.*;

/*

<applet code=”ColorDemo” width=350 height=300>

</applet>

*/

public class ColorDemo extends Applet {

 public void init() {

setBackground(Color.CYAN);

}

 public void paint(Graphics g) {

 g.setColor(Color.red); // predefined color

 g.drawRect(50, 100, 150, 100); // rectangle outline is red color

 Color clr = new Color(200, 100, 150);

 g.setColor(clr);

 g.fillRect(220,100, 150, 100); // rectangle filled with clr color

}

}

Sample Output:

Fonts in Java
The Font class states fonts, which are used to render text in a visible way.

Font class constructor
Font(Font font) //Creates a new Font from the specified font.

Font(String name, int style, int size) //Creates a new Font from the specified name, style
and point size.

Font variables available in Font class are:

Font.BOLD Font. SANS_SERIF
Font.ITALIC Font. CENTER_BASELINE
Font. PLAIN Font. DIALOG
Font. MONOSPACED Font. SERIF
Font. TRUETYPE_FONT Font. TYPE1_FONT
int size int style
float pointSize String name

Some of the commonly used methods supported by the Font class are as follows.

Method Description
String getFamily() Returns the family name of this Font.
int getStyle() Returns the style of this Font.
boolean isBold() Indicates whether or not this Font object’s style is BOLD
boolean isItalic() Indicates whether or not this Font object’s style is ITALIC.
boolean isPlain() Indicates whether or not this Font object’s style is PLAIN.
static Font getFont(String nm) Returns a Font object fom the system properties list.
static Font decode(String str) Returns the Font that the str argument describes.
String toString() Converts this Font object to a String representation.

Example:
import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

/* <APPLET CODE =”FontDemo.class” WIDTH=300 HEIGHT=200> </APPLET> */

public class FontDemo extends java.applet.Applet

 {

 Font f;

 String m;

 public void init()

 {

 f=new Font(“Arial”,Font.ITALIC,20);

 m=”Welcome to Java”;

 setFont(f);

 }

 public void paint(Graphics g)

 {

 Color c=new Color(100,100,255);

 g.setColor(c);

 g.drawString(m,4,20);

Font plainFont = new Font(“Serif”, Font.PLAIN, 24);

g.setFont(plainFont);

 g.drawString(“Font in PLAIN”, 50, 70);

 Font italicFont = new Font(“Serif”, Font.ITALIC, 24);

 g.setFont(italicFont);

 g.drawString(“Font in ITALIC”, 50, 120);

 Font boldFont = new Font(“Serif”, Font.BOLD, 24);

 g.setFont(boldFont);

 g.drawString(“Font in BOLD”, 50, 170);

 Font boldItalicFont = new Font(“Serif”, Font.BOLD+Font.ITALIC, 24);

 g.setFont(boldItalicFont);

 g.drawString(“Font in BOLD ITALIC”, 50, 220);

 }

 }

Sample Output:

Images in Java
Image control is superclass for all image classes representing graphical images.

Image class constructor

Image() // create an Image object

Some of the commonly used methods supported by the Image class are as follows.

Method Description
Graphics getGraphics() Creates a graphics context for drawing to an off-

screen image.
int getHeight(ImageObserver observer) Determines the height of the image.
Image getScaledInstance(int width, int
height, int hints)

Creates a scaled version of this image.

ImageProducer getSource() Gets the object that produces the pixels for the
image.

int getWidth(ImageObserver observer) Determines the width of the image.

The java.applet.Applet class provides following methods to access image.

getImage() method that returns the object of Image. Its syntax is as follows.1.

 public Image getImage(URL u, String image){}

getDocumentBase() method returns the URL of the document in which applet is em-2.
bedded.

 public URL getDocumentBase(){}

URL getCodeBase() method returns the base URL.3.

 public URL getCodeBase()

Example:

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import java.net.URL;

/* <APPLET CODE =”ImageDemo.class” WIDTH=300 HEIGHT=200> </APPLET> */

public class ImageDemo extends java.applet.Applet

 {

 Image img;

 public void init()

 {

 }

 public void paint(Graphics g)

 {

 URL url1 = getCodeBase();

 img = getImage(url1,”java.jpg”);

 g.drawImage(img, 60, 120, this);

 }

 }

Sample Output:

Event Handling

Any change in the state of any object is called event. For Example: Pressing a button, en-
tering a character in Textbox, Clicking or dragging a mouse, etc. The three main components
in event handling are:

Events:•	 An event is a change in state of an object. For example, mouseClicked,
mousePressed.

Events Source:•	 Event source is an object that generates an event. Example: a button,
frame, textfield.

Listeners:•	 A listener is an object that listens to the event. A listener gets notified when
an event occurs. When listener receives an event, it process it and then return. Listeners
are group of interfaces and are defined in java.awt.event package. Each component
has its own listener. For example MouseListener handles all MouseEvent.

Some of the event classes and Listener interfaces are listed below.

Event Classes Generated when Listener Interfaces
ActionEvent button is pressed, menu-item is selected,

list-item is double clicked
Action Listener

MouseEvent mouse is dragged, moved, clicked, pressed
or released and also when it enters or exit
a component

Mouse Listener and
Mouse Motion
Listener

MouseWheelEvent mouse wheel is moved Mouse Wheel Listener
KeyEvent input is received from keyboard Key Listener
ItemEvent check-box or list item is clicked Item Listener
TextEvent value of textarea or textfield is changed Text Listener
AdjustmentEvent scroll bar is manipulated Adjustment Listener
WindowEvent window is activated, deactivated, deico-

nified, iconified, opened or closed
Window Listener

ComponentEvent component is hidden, moved, resized or
set visible

Component Listener

ContainerEvent component is added or removed from
container

Container Listener

FocusEvent component gains or losses keyboard
focus

Focus Listener

Java program for handling keyboard events.
Test.java

import java.awt.event.*;

import java.applet.*;

import java.applet.*;

import java.awt.event.*;

import java.awt.*;

//Implementing KeyListener interface to handle keyboard events

public class Test extends Applet implements KeyListener

{

 String msg=””;

 public void init()

 {

 addKeyListener(this); //use keyListener to monitor key events

 }

 public void keyPressed(KeyEvent k) // invoked when any key is pressed down

 {

 showStatus(“KeyPressed”);

 }

 public void keyReleased(KeyEvent k) // invoked when key is released

 {

 showStatus(“KeyRealesed”);

 }

//keyTyped event is called first followed by key pressed or key released event

 public void keyTyped(KeyEvent k) //invoked when a textual key is pressed

 {

 msg = msg+k.getKeyChar();

 repaint();

 }

 public void paint(Graphics g)

 {

 g.drawString(msg, 20, 40);

 }

}

Test1.html

<html>

<body>

<applet code=”Test.class” width=”400” height=”300”>

</applet>

</body>

</html>

Sample Output:

Adapter Classes
An adapter class provides the default implementation of all methods in an event listener

interface. Adapter classes are very useful when you want to process only few of the events
that are handled by a particular event listener interface. For example MouseAdapter provides
empty implementation of MouseListener interface. It is useful because very often you do not
really use all methods declared by interface, so implementing the interface directly is very
lengthy.

Adapter class is a simple java class that implements an interface with only EMPTY •	
implementation.

Instead of implementing interface if we extends Adapter class ,we provide •	
implementation only for require method

The adapter classes are found in java.awt.event, java.awt.dnd and javax.swing.
event packages. The Adapter classes with their corresponding listener interfaces are as fol-
lows.

Adapter Class Listener Interface
Window Adapter Window Listener
Key Adapter Key Listener
Mouse Adapter Mouse Listener
Mouse Motion Adapter Mouse Motion Listener
Focus Adapter Focus Listener
Component Adapter Component Listener
Container Adapter Container Listener
HierarchyBoundsAdapter HierarchyBoundsListener

Example:
import java.awt.*;

import java.awt.event.*;

public class AdapterExample{

 Frame f;

 AdapterExample(){

 f=new Frame(“Window Adapter”);

 f.addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e) {

 f.dispose();

 }

 });

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

public static void main(String[] args) {

 new AdapterExample();

}

}

Sample Output:

Actions
The Java Action interface and AbstractAction class are terrific ways of encapsulating be-

haviors (logic), especially when an action can be triggered from more than one place in your
Java/Swing application.

 javax.swing

Interface Action

An Action can be used to separate functionality and state from a component. For example,
if you have two or more components that perform the same function, consider using an Ac-
tion object to implement the function.

An Action object is an action listener that provides not only action-event handling, but
also centralized handling of the state of action-event-firing components such as tool bar but-
tons, menu items, common buttons, and text fields. The state that an action can handle in-
cludes text, icon, mnemonic, enabled, and selected status.

The most common way an action event can be triggered from multiple places in a Java/
Swing application is through the Java menubar (JMenuBar) and toolbar (JToolBar)

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

 public class ButtonAction {

 private static void createAndShowGUI() {

 JFrame frame1 = new JFrame(“JAVA Program”);

 frame1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton(“ << Java Action >>”);

 //Add action listener to button

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 System.out.println(“You clicked the button”);

 }

 });

 frame1.getContentPane().add(button);

 frame1.pack();

 frame1.setVisible(true);

 }

 public static void main(String[] args) {

 javax.swing.SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 createAndShowGUI();

 }

 });

 }

Output:

MouseEvent:
An event which indicates that a mouse action occurred in a component. A mouse action

is considered to occur in a particular component if and only if the mouse cursor is over the
unobscured part of the component’s bounds when the action happens. For lightweight com-
ponents, such as Swing’s components, mouse events are only dispatched to the component if
the mouse event type has been enabled on the component.

A mouse event type is enabled by adding the appropriate mouse-based EventListener to
the component (Mouse Listener or Mouse Motion Listener), or by invoking Component.en-
ableEvents (long) with the appropriate mask parameter

 (AWTEvent.MOUSE_EVENT_MASK or AWTEvent.MOUSE_MOTION_EVENT_
MASK).

If the mouse event type has not been enabled on the component, the corresponding mouse
events are dispatched to the first ancestor that has enabled the mouse event type.Iif a MouseLis-
tener has been added to a component, or enableEvents(AWTEvent.MOUSE_EVENT_MASK) has
been invoked, then all the events defined by MouseListener are dispatched to the component.

On the other hand, if MouseMotionListener has not been added and enableEvents has not
been invoked with AWTEvent.MOUSE_MOTION_EVENT_MASK, then mouse motion events
are not dispatched to the component. Instead the mouse motion events are dispatched to the
first ancestor that has enabled mouse motion events.

The hierarchy of MouseEvent class is shown below.

Mouse Events are•	

a mouse button is pressed ○

a mouse button is released ○

a mouse button is clicked (pressed and released) ○

the mouse cursor enters the unobscured part of component’s geometry ○

the mouse cursor exits the unobscured part of component’s geometry ○

Mouse Motion Events are•	

the mouse is moved ○

the mouse is dragged ○

A MouseEvent object is passed to every MouseListener or MouseAdapter object which
is registered to receive the “interesting” mouse events using the component’s addMouseLis-
tener method. The MouseAdapter objects implement the MouseListener interface. Each such
listener object gets a MouseEvent containing the mouse event.

A MouseEvent object is also passed to every MouseMotionListener or MouseMotion-
Adapter object which is registered to receive mouse motion events using the component’s ad-
dMouseMotionListener method. (MouseMotionAdapter objects implement the MouseMo-
tionListener interface.) Each such listener object gets a MouseEvent containing the mouse
motion event.

When a mouse button is clicked, events are generated and sent to the registered MouseLis-
teners. The state of modal keys can be retrieved using InputEvent.getModifiers() and InputE-
vent.getModifiersEx(). The button mask returned by InputEvent.getModifiers() reflects only
the button that changed state, not the current state of all buttons.. To get the state of all buttons
and modifier keys, use InputEvent.getModifiersEx(). The button which has changed state is
returned by getButton().

For example, if the first mouse button is pressed, events are sent in the following order:

id modifiers button

 MOUSE_PRESSED: BUTTON1_MASK BUTTON1

 MOUSE_RELEASED: BUTTON1_MASK BUTTON1

 MOUSE_CLICKED: BUTTON1_MASK BUTTON1

 When multiple mouse buttons are pressed, each press, release, and click results in a sepa-
rate event.

For example, if the user presses button 1 followed by button 2, and then releases them in
the same order, the following sequence of events is generated:

id modifiers button

 MOUSE_PRESSED: BUTTON1_MASK BUTTON1

 MOUSE_PRESSED: BUTTON2_MASK BUTTON2

 MOUSE_RELEASED: BUTTON1_MASK BUTTON1

 MOUSE_CLICKED: BUTTON1_MASK BUTTON1

 MOUSE_RELEASED: BUTTON2_MASK BUTTON2

 MOUSE_CLICKED: BUTTON2_MASK BUTTON2

 If button 2 is released first, the MOUSE_RELEASED/MOUSE_CLICKED pair for BUT-
TON2_MASK arrives first, followed by the pair for BUTTON1_MASK.

MOUSE_DRAGGED events are delivered to the Component in which the mouse button
was pressed until the mouse button is released (regardless of whether the mouse position is
within the bounds of the Component). Due to platform-dependent Drag&Drop implementa-
tions, MOUSE_DRAGGED events may not be delivered during a native Drag&Drop opera-
tion.

In a multi-screen environment mouse drag events are delivered to the Component even
if the mouse position is outside the bounds of the Graphics Configuration associated with
that Component. However, the reported position for mouse drag events in this case may differ
from the actual mouse position:

In a multi-screen environment without a virtual device: The reported coordinates for mouse •	
drag events are clipped to fit within the bounds of the GraphicsConfiguration associated
with the Component.

In a multi-screen environment with a virtual device: The reported coordinates for •	
mouse drag events are clipped to fit within the bounds of the virtual device associated
with the Component.

The following program is an example for MouseEvent.
 import java.awt.*;

 import java.awt.event.*;

 pubic class MouseListenerExample extends Frame implements MouseListener{

 Label l;

 MouseListenerExample(){

 addMouseListener(this);

 l=new Label();

 l.setBounds(20,50,100,20);

 add(l);

 setSize(300,300);

 setLayout(null);

 setVisible(true);

 }

 public void mouseClicked(MouseEvent e) {

 l.setText(“Mouse Clicked”);

 }

 public void mouseEntered(MouseEvent e) {

 l.setText(“Mouse Entered”);

 }

 public void mouseExited(MouseEvent e) {

 l.setText(“Mouse Exited”);

 }

 public void mousePressed(MouseEvent e) {

 l.setText(“Mouse Pressed”);

 }

 public void mouseReleased(MouseEvent e) {

 l.setText(“Mouse Released”);

 }

public static void main(String[] args) {

 new MouseListenerExample();

}

}

Output:

Java AWT Hierarchy
The hierarchy of Java AWT classes are given below.

Container
The Container is a component in AWT that can contain another component like buttons,

textfields, labels etc. The classes that extend Container class are known as container such as
Frame, Dialog and Panel.

Window

The window is the container that has no borders and menu bars. You must use frame,
dialog or another window for creating a window.

Panel

The Panel is the container that doesn’t contain title bar and menu bars. It can have other
components like button, textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can have other
components like button, textfield etc.

The following table gives the methods of Component class:

Method Description
public void add(Component c) inserts a component on this component.
public void setSize(int width,int height) sets the size (width and height) of the compo-

nent.
public void setLayout(Layout Manager
m)

defines the layout manager for the component.

public void setVisible(boolean status) changes the visibility of the component, by de-
fault false.

The following programs are the examples of Java AWT:

To create simple awt program, we need to create a frame. There are two ways to create a
frame in AWT.

By extending Frame class (inheritance)•	

By creating the object of Frame class (association)•	

Example program using by extending Frame class (inheritance)
import java.awt.*;

class First extends Frame{

First(){

Button b=new Button(“click me”);

b.setBounds(30,100,80,30);// setting button position

add(b);//adding button into frame

setSize(300,300);//frame size 300 width and 300 height

setLayout(null);//no layout manager

setVisible(true);//now frame will be visible, by default not visible

}

public static void main(String args[]){

First f=new First();

}}

Output:

Example program using by creating the object of Frame class (association)
import java.awt.*;

class First2{

First2(){

Frame f=new Frame();

Button b=new Button(“click me”);

b.setBounds(30,50,80,30);

f.add(b);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[]){

First2 f=new First2();

}}

Output:

Java Swing
Swing was developed to provide a more sophisticated set of GUI components than the

earlier Abstract Window Toolkit (AWT). Swing provides a look and feel that emulates the
look and feel of several platforms, and also supports a pluggable look and feel that allows ap-
plications to have a look and feel unrelated to the underlying platform. It has more powerful
and flexible components than AWT.

 In addition to familiar components such as buttons, check boxes and labels, Swing pro-
vides several advanced components such as tabbed panel, scroll panes, trees, tables, and
lists.

Unlike AWT components, Swing components are not implemented by platform-specific
code. Instead, they are written entirely in Java and therefore are platform-independent. The
term “lightweight” is used to describe such an element.

 Java Swing is a part of Java Foundation Classes (JFC) that is used to create window-
based applications. It is built on the top of AWT (Abstract Windowing Toolkit) API and
entirely written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JText-
Field, JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Swing Features

Light Weight•	 - Swing component are independent of native Operating System’s
API as Swing API controls are rendered mostly using pure JAVA code instead of
underlying operating system calls.

Rich controls•	 - Swing provides a rich set of advanced controls like Tree, TabbedPane,
slider, colourpicker, table controls

Highly Customizable•	 - Swing controls can be customized in very easy way as visual
appearance is independent of internal representation.

Pluggable look-and-feel•	 - SWING based GUI Application look and feel can be
changed at run time based on available values.

Hierarchy of Java Swing classes
The hierarchy of java swing API is given below.

The following program is an example for Java Swing.
import javax.swing.*;

public class FirstSwingExample {

public static void main(String[] args) {

JFrame f=new JFrame();//creating instance of JFrame

Button b=new JButton(“click”);//creating instance of JButton

b.setBounds(130,100,100, 40);//x axis, y axis, width, height

 f.add(b);//adding button in JFrame

 f.setSize(400,500);//400 width and 500 height

f.setLayout(null);//using no layout managers

f.setVisible(true);//making the frame visible

}

}

Output:

	u1
	Unit 1 Final

	u2
	Unit 2

	u3
	Unit 3

	u4
	Unit 4

	u5
	Unit 5

