Power system Transients
UNIT-1
Introduction and Survey:-
Power system transient is the outward manifestation of a sudden Change in system Conditions as when a switch opens(or) Closes (or) a fault Occurs on a system
\rightarrow The transient period is very short and they Cause overvoltages on power system.
Sources and Effects of transients on power system.
a) Internal causes

Mainly due to the oscillations set up by the sudden changes in the circuit due to breaker operation
\rightarrow The circuit changes may be normal suritching operation such as opening of a circuit breaker or it may be a fault condition.
(1) Switching surges

The making and breaking of the electric circuits with siritch gear may result in abnormal transect Over voltages in power system having the Inductances and Capacitances.

Switching surges Occurs in different situations
(1) Interruption of low inductive currents by high speed Circiut breaker.
(2) Interruption of small capacitive currents
(3) Ferro resonance Condition
(4) Energization of a loaded line

Current Chopping:-
\rightarrow Results in the production of high voltage transients across the contacts of air blast circuit breaker.

When breaking low currents (ie) unloaded tramfomer or reactor magnetizing current, the powerful deionizing effect of air blast Causes the current abruptly to zero well before the natural current zero is reached. This phenomenon is called Current Chopping.

Prevention
Resistance switching.
Switching Operation of unloaded line:-
\rightarrow Traveling waves are set up which produce transient over voltage on the line.
\rightarrow On reaching the terminal point, the wave is reflected back to the supply end without change.
of sign. This causes voltage doubling (voltage on the line becomes trice the normal value).

It is because the line losses attenuate the wonk in a very short time, the line will attain its normal supply voltage.
Ferro Resonance Condition:-
Resonance in an electrical system occurs $\left\{\begin{array}{l}\text { Inductive reactance } \\ \text { of the circuit }\end{array}\right\}=\{$ Capacitive Reactance $\}$
Also Impedence of the circiut $=$ Resistance of the
circuit
Power factor is unity
\Rightarrow Causes high transient voltage in the power system
In usual transmission lines, the capacitance is very small hence the resonance rarely occurs at normal freq. \rightarrow If the generator emf wave is distorted, the trouble of resonance may occur due to $5^{\text {th }}$ or higher harmonics This phenomenon is referred as ferro Resonance.

Energigation of a loaded line:-
\rightarrow Transients will be produced during the Birthing operations of a loaded line
\rightarrow Loaded line is suddenly interrupted
\rightarrow Set up a voltage of $2 z_{n}$ I across the break, where " I " is the instantaneous value of current and " z_{n} " is the natural impedence of the line.

$$
z_{n}=\sqrt{H / c}
$$

Insulation failure:-
Common case of transient over voltage in power system is the Insulation failure between line and earth, which Cause high voltage in the System. Suppose a line at potential " V " is earthed at pointio

Earthing of line Causes ' 2 ' equal voltages " v 'travel along $C A$ and $C B$ Containing Currents $-\frac{v}{2 n}$ and $+\frac{V}{2 n}$ Respectively.

Both currents pass through ' C ' to earth so that the current

Arcing ground:-
If the neutral of 3ϕ wires was not earthed in long high voltage transmission lines, a serious problem called arcing ground
\rightarrow Arcing ground produces severe oscillations of three to four times the normal voltage.

The phenomenon of intermittent arc taking place in the line to ground fault of a 3ϕ system with Consequent production of transients is known as racing ground.
Prevention:-
Arcing ground can be prevented by earthing the neutral.
Natural Cause (Lighting).
\rightarrow Electric discharge between cloud and earth
\rightarrow Between Clouds
\rightarrow Between the charge Centres of the same cloud Lightning is a huge spark and takes place when clouds are charged to such a high potential witt respect to earth (or) neighbouring Cloud.

Lighting transients:-
\rightarrow unavordable event that affects power system through several mechanism.
\rightarrow Significant lightning parameters include waveforms, Amplitude \& frequency of occurrence.

Direct Hash

\rightarrow How of lighting current through the eartiring Impedance resulting in Oreavoltages.
\rightarrow Effective Impedance of the Lightning channel is high (Fe wthousand ohms)
\rightarrow Lightring current can be practically considered as an Ideal current source.

Near Hash

\rightarrow Immediate threat' is voltage induced in the Circuit loops
\rightarrow Which in turn produce surge Currents.

Far Flash.
\rightarrow Thereat is limited to indus voltages
\rightarrow Reflects the characteristics of Coupling path such as Brisance and nature of the system between the point of flash and the end -user facility, earthing practic and earth correction Impedence ax branching out of the distribution system.
Origin of Lightning surges:-
Current surges \Rightarrow Due to direct flasks to
Overhead lines
\Rightarrow including Flashover events
Indued transients $\} \Rightarrow$ Due to flashes at some
(transmits) Overwoltages \Rightarrow distance
\Rightarrow Due to the resulting Surge Currents.
\Rightarrow Caused by the resistive, inductive and capacitive Coupling from 'the systems Carrying lightning currents and resulting surge currents.

Direct flashes to Overhead lines:-

\rightarrow Effective impedance of the lightning channel is high.
\rightarrow Lighting Current Can practically be considered as an Ideal Current
\therefore Source.
\rightarrow Resulting overvoltages are determined by the effective Impedance
\rightarrow The Impedance in the first moment is determined by the Characteristic Impedence of the line.
\rightarrow Typical values of characteristic impedences ranging from tens of ohms to 400 ohms, very high queroltages occur that can be expected to cause flashover to earth long before the service entrance of a building becomes involved.
\rightarrow Lightning surges appearing at the Lerirce entrance, while reflecting the severity of lightning stroke and its distance bears no resemblances to the actual lightning current.

Induced transient Overvottages On Overhead lines.
\rightarrow Due to the Changes in electromagnetic field Ca by the lightning flash surges are induced in th overhead lines of all kinds, even at the Consideral distance from the flash.
\rightarrow These voltages have essentially the same value for all conductors because the phase seperation i small Compared to the distance to the flash.
\rightarrow Highloltage line with 10 m Conductor height
\rightarrow Lightning current of 20 KA
\rightarrow Induced voltage is in the order of 100 kV for a flash at 100 m distance.
\rightarrow Low-voltage line with a height of 5 m Current of 100 KA , induce a voltage of about 2 kV even at a distance of 10 km .
Transient Qvervoltages Caused by Coupling from other Systems:-

A lightning flash to earth or to a part of a system normally at ground potential can result in an earth potential of high value at the point of strike. This phenomenon will cause Over voltages in electrical systems wit using this
point of earth as reference for their-earthing system
50%

Example of resistive coupling from lightning protection system.
Potential rise of the earthing system is determined by
(1) Lightning Current
(2) Effective earthing Inipedence.
\rightarrow In the first moment, the potential of the earth electrode is determined by the local Impedance
\rightarrow This means that a high voltage is produced between the earthing system and electrical installation inside the brilding, with a high probability of Causing insulation breakdown.

Ave to the high electromagnetic fields caused by the lightning current, inductive and Capacitive Coupling to electrical systems that are close to lighting path Can also Cause over-voltages of Concern

Especially on electronic and data Systems, Causing fartures and/or malfunctions.
Lightning surge transients from MV systems:-
The propagation of the surge through the MV system and the transfer rate to the LV system depends on the physical construction of the system

Sirtching Transients:-
Sirtching transient is initiated whenever there is a sudden Change of Ciaccut Conditions.

The transient is most frequently developed due to switching operations
\rightarrow Closing of a siritch (or) circuit leaker to energies a load
\rightarrow The opening of a circiut breaker to clear a fault
RL Circuit transient with sine wave excitation:-

The Load is represented by a series Combination of resistance and Inductance which has a steady state power factor given by

$$
\cos \phi=\frac{R}{|2|}=\frac{R}{\sqrt{\left(R^{2}+\omega^{2} L^{2}\right)}}=\frac{R}{\left[\left(R^{2}+w^{2} L^{2}\right)\right]^{1 / 2}}
$$

The source is assumed to have negligible impedance Compared with the load.

$$
\begin{align*}
& V=R I+L \cdot \frac{d I}{d t} \tag{D}\\
& V=V_{m} \sin \left(\omega_{t}+\theta\right) \tag{3}
\end{align*}
$$

Equating (2) and (3) we get

$$
\begin{align*}
R I+L \frac{d I}{d t} & =V_{m} \sin (\omega t+\theta) \rightarrow 4 \\
& =V_{m}[\sin \omega t \cos \theta+\cos \omega t \sin
\end{align*}
$$

Taking replace Tramform of eq (4) on both sides

$$
R i(s)+L s i(s)-L i(0)=V_{m}\left[\frac{\omega}{s^{2}+\omega^{2}} \cdot \cos \theta+\frac{s}{} \sin \theta\right]
$$

In this curciut $I(0)=0$
The solution for the current is

$$
\begin{align*}
& \text { The solution for the } \tag{6}\\
& c(s)=\frac{V_{m}}{L} \cdot \frac{1}{s+(R / L)}\left[\frac{\omega \cdot \cos \theta}{s^{2}+\omega^{2}}+\frac{s \sin \theta}{s^{2}+\omega^{2}}\right] \\
& \dot{U}(s)=\frac{A}{(s+\alpha)\left(s^{2}+\omega^{2}\right)}+\frac{B S}{(s+\alpha)\left(s^{2}+w^{2}\right)}
\end{align*}
$$

Detailed step
Rh circuit

$$
\begin{align*}
& i(s)=\frac{A}{(s+\alpha)\left(s^{2}+\omega^{2}\right)}+\frac{B s}{(s+\alpha)\left(s^{2}+\omega^{2}\right) .} \\
& \frac{A+B s}{(s+\alpha)\left(s^{2}+\omega^{2}\right)}=\frac{a}{(s+\alpha)}+\frac{b s+c}{\left(s^{2}+\omega^{2}\right)} \\
& A+B s=a\left(s^{2}+\omega^{2}\right)+b s+c(s+\alpha) \rightarrow
\end{align*}
$$

Find the values of $a, b, \& c$
Sub $s=-\alpha$ in eq (1) we get

$$
\begin{aligned}
& A+B(-\alpha)=a\left((-\alpha)^{2}+\omega^{2}\right)+0 \\
& A-B \alpha=a\left(\alpha^{2}+\omega^{2}\right) \\
& \Rightarrow a=\frac{A-B \alpha}{a\left(\alpha^{2}+\omega^{2}\right)}
\end{aligned}
$$

Equating the Coefficient of " s^{2} " in eq (1) we get

$$
\begin{aligned}
& 0=a+b \Rightarrow a=-b \Rightarrow b=-a \\
& b=\frac{-A+B \alpha}{a\left(\alpha^{2}+\omega^{2}\right.}
\end{aligned}
$$

Lquating the Constants in eq, 11

$$
\begin{aligned}
& C=\frac{A}{\alpha}-\frac{a \omega^{2}}{\alpha} \\
& C=\frac{A}{\alpha}-\left[\frac{A+B \alpha}{\alpha^{2}+\omega^{2}}\right]\left[\frac{\omega^{2}}{\alpha}\right]
\end{aligned}
$$

Sub the values of $a, b \cdot \& c$

$$
\begin{aligned}
= & \frac{a}{s+\alpha}+\frac{b s+c}{\left(s^{2}+w^{2}\right)} \\
= & \frac{a}{s+\alpha}+\frac{b s}{s^{2}+\omega^{2}}+\frac{C}{s^{2}+\omega^{2}} \\
= & \frac{A-B \alpha}{(s+\alpha)\left(\alpha^{2}+\omega^{2}\right)}+\frac{(-A+B \alpha) s}{\left(\alpha^{2}+\omega^{2}\right)\left(s^{2}+\omega^{2}\right)}+\frac{A}{\alpha\left(s^{2}+\omega^{2}\right)} \\
& -\frac{(A+B \alpha)}{\alpha\left(s^{2}+\omega^{2}\right)} \frac{\omega^{2}}{\left(\alpha^{2}+\omega^{2}\right)}
\end{aligned}
$$

Seperating the Constants $A A B$.

$$
\begin{aligned}
& =\frac{A}{(s+\alpha)\left(\alpha^{2}+\omega^{2}\right)}-\frac{A s}{\left(\alpha^{2}+\omega^{2}\right)\left(s^{2}+\omega^{2}\right)}+\frac{A}{\alpha\left(s^{2}+\omega^{2}\right)}-\frac{A \omega^{2}}{\alpha\left(s^{2}+\omega^{2}\right)} \\
& -\frac{B \alpha}{(s+\alpha)\left(\alpha^{2}+\omega^{2}\right)}+\frac{B \alpha s}{\left(\alpha^{2}+\omega^{2}\right)\left(s^{2}+\omega^{2}\right)}-\frac{B \alpha \omega^{2}}{\alpha\left(s^{2}+\omega^{2}\right)\left(\alpha^{2}+\omega^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A}{\alpha^{2}+\omega^{2}}\left[e^{-\alpha t} \cos \omega t-\frac{\omega}{\alpha} \sin \omega t+\frac{\alpha^{2}+\omega^{2}}{\alpha \omega} \cdot \sin \omega t\right] \\
& +\frac{B}{\alpha^{2}+\omega^{2}}\left[-\alpha e^{-\alpha t}+\alpha \cos \omega t+\sin \omega t \cdot \omega\right] \\
& \frac{A}{\alpha^{2}+\omega^{2}}\left[e^{-\alpha t}-\cos \omega t-\frac{\omega}{\alpha} \sin \omega t+\frac{\omega}{\alpha} \sin \omega t\right. \\
& \frac{B}{\alpha^{2}+\omega^{2}}\left[-\frac{\alpha}{\omega} \sin \omega t\right] \\
& \frac{A}{\alpha^{2}+\omega^{2}}\left[e^{-\alpha t}-\alpha \cos \omega t+\omega t+\sin \omega t\right] \\
& \frac{B}{\alpha^{2}}\left[\frac{\alpha}{\omega} \sin \omega t\right]+ \\
& \frac{\alpha^{2}+\omega^{2}}{\left[-\alpha e^{-\alpha t}+\alpha \cos \omega t+\omega \cdot \sin \omega t\right]}
\end{aligned}
$$

b $A \& B$ ralues in the above eqn

$$
\frac{V_{m}}{L\left(\alpha^{2}+\omega^{2}\right)}\left[\begin{array}{l}
\omega \cos \theta\left(e^{-\alpha t}-\cos \omega t+\frac{\alpha}{\omega} \sin \omega t\right] \\
\\
+\sin \theta\left(\alpha \cos \omega t+\omega \sin \omega t-\alpha e^{-\alpha t}\right.
\end{array}\right]
$$

Where

$$
\begin{aligned}
& A=\frac{V_{m}}{L} \omega \cdot \cos \theta \\
& B=\frac{V_{m}}{L} \sin \theta \\
& \alpha=R / L
\end{aligned}
$$

The inverse Leplace transform of the equation (6) Sub the values of A, B and α.

$$
\begin{aligned}
& I(t)=\frac{V_{m}}{L\left[\alpha^{2}+\omega^{2}\right]}\left[\omega \cos \theta\left(e^{-\alpha t}-\cos \omega t+\frac{\alpha}{\omega} \sin \omega t\right)\right. \\
&+\sin \theta\left[\alpha \cdot \cos \omega t+\omega \sin \omega t-\alpha e^{-a t}\right]
\end{aligned}
$$

Sub

$$
\begin{align*}
& \tan \phi=\frac{\omega L}{R}=\frac{\omega}{\alpha} \tag{7}\\
& \sin \phi=\frac{\omega}{\left(\alpha^{2}+\omega^{2}\right)^{1 / 2}} \\
& \cos \phi=\frac{\alpha}{\left(\alpha^{2}+\omega^{2}\right)^{1 / 2}} \\
& I(t)=\frac{V_{m}}{L\left(\alpha^{2}+\omega^{2}\right)^{1 / 2}}\left[-\sin (\theta-\phi) e^{-a t}+\sin (\omega t+\theta-\phi)\right] \\
& I(t)=\frac{V_{m}}{\left(R^{2}+\omega^{2} L^{2}\right)^{1 / 2}}\left[\sin \omega t+(\theta-\phi)-\sin [\theta-\phi]^{-a t}\right]
\end{align*}
$$

In this equation. the foist term is the steady state final value. Its amplitude is Vm / z and it has a phase angle $-\phi$ wot voltage
The second term is the transient term
Case 1:-
When $t=0$, the transient term is equal \& opp to the steady state term $\&$ hence the current starts from zero.
Case 2:-
When the surich closes at $\theta=\phi$, the transient term will be zero and the current wave will be symmetrical.
Case 3
When the closes at $[\theta-\phi]= \pm \pi / 2$, the transient term attains its maximum amplitude and the fist peak of resulting composite current wave will apprasach twice the peak amplitude of steady state Smisoidal Component.

The Opening and closing forces are proportional to the square of the current.

Thus if the current is doubled, the forces ere increased four fold.

If a short circuit occurs, as symmetrical current Can flow through the contacts of a closed breaker

Double frequency transients :-

The double freq transient is initiated by opening the circuit breaker as shown in the above circiut

Here $L_{1} \Rightarrow$ Inductance on the source side
$c_{1} \Rightarrow$ Stray Capacitance on the Source side
$L_{2} \Rightarrow$ Inductive Load
$c_{2} \Rightarrow$ Stray Capacitance on the Load side
When the sirtch operates in the circuit, it Completely divorces the load from the supply.
Thess the tux halves of the circuit behave independently.

Before the switch Opening, the voltage will dire in proportion to the inductances
$\left.\begin{array}{l}\text { The voltage of the } \\ \text { Capacitors urill be }\end{array}\right\}\left(\frac{L_{2}}{L_{1}+L_{2}}\right)(v)$
If $L_{2}>L_{1}$, the regulation would be very poor $C_{1} \& C_{2}$ are charged to little less than instantaneous voltage
When current reaches zero, the voltage will be at its peak. The Natural freq will be

$$
f_{2}=\frac{1}{2 \pi \sqrt{L_{2} c_{2}}}
$$

Mean while, ' C ', free to take up the source potential will oscillate about that value until the losses of the system damp out the disturbance Frequency of Osullation will be

$$
f_{1}=\frac{1}{2 \pi \sqrt{L_{1} c_{1}}}
$$

$\left.\begin{array}{l}\text { Recovery voltage across } \\ \text { the C.B Contacts }\end{array}\right\}=\left\{\begin{array}{l}\text { Source side } \\ \text { ta ancients }\end{array}\right\}-\left\{\begin{array}{l}\text { Load } \\ \text { side } \\ \text { transients }\end{array}\right\}$

Source side transient

Load side transient

Recovery voltage across the sirach
There are many double frequency circints
Consider a circuit showing a circuit breaker clearing a short circuit on the secondary side of tramformer
Let $L_{1} \Rightarrow$ Inductance upto the transformer
$L_{2} \Rightarrow$ Leakage inductance of the transformer
$c_{1} \& c_{2} \Rightarrow$ Inherent Capacitance on either side of the transformer

The initial voltage on the Capacitor' C_{1} ' in the above fy

$$
V C_{1}(0)=\frac{L_{2}}{L_{1}+L_{2}} \cdot V \rightarrow(1
$$

Now

$$
\begin{array}{ll}
V c_{1}=V-L_{1} \cdot \frac{d I_{1}}{d t}=V c_{1}(0)+\frac{1}{c_{1}} \int\left(I_{1}-I_{2}\right) d t \\
V c_{2}=\frac{1}{c_{2}} \int I_{2} d t & \rightarrow(3) \\
V c_{2}=V-L_{1} \frac{d I_{1}}{d t}-L_{2} \cdot \frac{d I_{2}}{d t} & \rightarrow \text { (4) }
\end{array}
$$

On transforming this eqn

$$
\frac{V}{s}-L_{1} s i_{1}(s)-L_{1} I_{1}(0)=\frac{V c_{1}(0)}{s}+\frac{1}{c_{1} s}\left[i_{1}(s)-i_{2}(s)\right]
$$

from eq(3) taking LT T

$$
V c_{2}(s)=\frac{i_{2}(s)}{s c_{2}}
$$

Taking L.T of eq (4)

$$
V C_{2}(s)=\frac{V}{s}-L_{1} s i_{1}(s)+L_{1} I(0)-L_{2} s i_{2}(s)+L_{2} I_{2}(0)
$$

Tine is measured from the instant when the switch clear at cold current zero
$I_{1}(0)$ and $I_{2}(0)=0$

$$
i_{1}(s)=\frac{V}{L_{1} s^{2}}\left[\frac{L_{2} c_{2} s^{2}+1}{4[s]}\right] V c_{2}[s]
$$

Sub (5), (6) and (1) in (8) eqn

$$
\begin{array}{r}
\left.\left[\frac{L_{2} c_{2} s^{2}+1}{L_{1} s}\right] V c_{2}[s]-\frac{V}{L_{1} s_{2}}\right] L_{1} s+\frac{1}{c_{1} s}+\frac{c_{2}}{c_{s}} V c_{2}(s) \\
=\frac{V_{c_{1}}(0)-V}{s} \rightarrow \text { (9) }
\end{array}
$$

Eq. (9) Can be rewritten as

$$
\begin{aligned}
&\left.S^{4}+S^{2}\left[\frac{1}{L_{1} c_{1}}+\frac{1}{L_{2} C_{2}}+\frac{1}{L_{2} C_{1}}\right]+\frac{1}{L_{1} c_{1} L_{2} C_{2}}\right] V c_{2}(S) \\
&=V\left[\frac{S}{\left(L_{1}+L_{2}\right) C_{2}}+\frac{1}{L_{1} c_{1} L_{2} c_{2} S}\right]
\end{aligned}
$$

Different types of power system Transients:-
Electrical power systems Contain energy storage elements in the form of Inductances and Capacitances of electrical Components and inertia of rotating machines
(I) Depending upon the duration of transients

Wtra-fast transient
\rightarrow Caused by either lighting or by the abrupt but normal network changes resulting from normal sirtching operation.
\rightarrow These transients are entirely electrical in nature
\rightarrow They generally last only for few milli seconds
\rightarrow These transients give rise to high voltage which provides the basis of insulation design in the system

Meduirm fast transients:-
\rightarrow These transients occurs due-to abrupt short Circuits in the system
\rightarrow It Causes abnormal structural changes in the system.
\rightarrow These transients are also entirely electric in
nature and are responsible for excessive currents in the system.
\rightarrow Short circuit transient may be present in the system for longer period
Slow transients:-
\rightarrow They are electro mechanicd in nature
\rightarrow It Causes mechanical oscillations of rotors of synchronous machines
\rightarrow Causes instability of the interconnected power system.
\rightarrow This occurs by putting some or all the machines out of synchronism.
I) Depending on its Nature :-

Impulsive Low-frequency transient:-
\rightarrow Rises in 0.1 ms and lasts more than 1 ms
\rightarrow Contains freq Components upto 5 KHz .
\rightarrow Most Common type of transients recorded on power system.
\rightarrow They are not only easily propagated lat they can also be Amplified by a power-system resonance phenomenon
\rightarrow Measurements of these types of transients should be useful for all classes of applications like benchmarking, legal, trouble shooting \& Laboratory.
Meduim Frequency Impulse transient:
\rightarrow Lasts between 50 ns to 1 ms
\rightarrow Oscillatory transients between 5 and 500 kHy
\rightarrow These transients may not propagate as easily as low-froquency types
\rightarrow Causes arcing faults on the power distilibution system which results in voltage sag on many of the User power systems.
\rightarrow Applications \rightarrow Trouble shooting \& Lab classes.
High frequency types
\rightarrow Duration below sons
\rightarrow Frequency changes between 0.5 and 5 MAz
\rightarrow Applications Lab \& troll shooting.
Oscillatory Transients:
Low Frequency transients:-
\rightarrow Caused when a discharged power-factor Correction Capacitor is sirtched on across the line (8)

Capacitor resonates with the inductance of the distribution system
Peak of this waveform cant exceed trice the peek Voltage of the sine wave and is more typically $120 \%-140 \%$ of the sine peak.
\rightarrow In some specific Circumstances, there can le multiplication of the transient by resonance with the other power factor Correction Capacitors
High frequency transients:-
\rightarrow Caused by lightning \& when inductive loads cut off.
\rightarrow Typical peak voltages for end-use application are hundreds of volts to a few thousand volts
\rightarrow Several thousand amps of current may be available
Extremely fast transients (or) EFT's
\rightarrow Have rise and fall times in nano second region
\rightarrow Caused by arcing faults such as bad brushes in motors and are rapidly damped out by even a few meters of distribution wiring.
\rightarrow The standard line fitters included an almost all electronic equipments remove EFTs.

Subsidence transients:
\rightarrow In Coupling capacitor, voltage transformers and brushing Capacitor voltage transformer, the elements $L \& C$ Contain stored energy.
\rightarrow When the disturbance such as fault occurs on the primary, then the subsidence transient is produced.
\rightarrow Due to this sudden reduction of voltage produced On the primary, the voltage may be oscillatory or may be unidirectional
\rightarrow The to this severe reduction, the secondary transient is produced.

Depending upon the Control of the transients produced in power System
\rightarrow There are ' 3 ' types
a) Ingle transients under our control
\rightarrow In this type, we are in a position to Open (or) close the surtch at our discretion \& are therefore able to anticipate the Consequences.
\rightarrow (b) Recurrent transients:-
\rightarrow The transients occuring regularly as Commutation transients in converting equipments.
(c) Random transients:-

The transients generated by extraneous operations beyond our control which appear in an v_{1} unpredictable random manner on our system.
Effects of Lighting transients:-
\rightarrow A direct pr) Indirect lightning stroke on a transmission line produces a steep fronted voltage wave on the line.
\rightarrow The voltage of this wave hire from zero to peak value in about I MS.
\rightarrow The travelling wave produced due to lighting transient will shatter the insulators and may even Wreck poles.
\rightarrow If the traveling waves produced due to lightning hit the Windings of the transformer or generator, it may cause Considerable damage
\rightarrow The inductance of the windings opposes any sudden passage of electric Charge through it.
\rightarrow The electric Charges "piles up' against the transformer
\rightarrow This induces such an excessive pressure between the Windings that the insulation may breakdown, resulting in the production of arc.
\rightarrow The line voltage is sufficient to maintain the arc long enough to severly damage the machine.
\rightarrow If the arc is initiated in any part of the power system ty lightning stroke, this arc ill set up very disturbing oscillations in the line.
\rightarrow This may damage otter equipment Connected to the line.

Importance of study of transients in planning:-
\rightarrow Transients are system problems
\rightarrow The disturbance Created in one location will permeate through out the system, after causing difficulties at points quite remote from its origin.
\rightarrow The study of switching transients in integrated system specially relates to EHV field.
\rightarrow For long line, the most serious problems are voltage surges in the power systems which are the Consequence of lighting. Since the lightning produce the highest voltage.
\rightarrow As system voltages Continue to increase," Suirtching transients" which in magnitude geared to system voltage Causes more serious trouble to power system.
\rightarrow In EHV transmission system, for the economic reasons we have to limit \& control siritching Surges. \rightarrow The line insulation required determines the cost of such transmission system.
\rightarrow If more insulators are added to a string, then the benefits oftained/unit decreases progressively
as the string becomes longer.
\rightarrow This is due to the poor distribution of voltage due to Capacitance effects.
\rightarrow Sudden reversal of voltage polarity which can occur with the travelling waves from surtching surges Causes a marked Reduction in the flash over voltage of Certain equipment

RLC circuit:-

For parallel circiut, depending upon the Input drive $F(t)$ Can be written as

$$
F(t)=\frac{d^{2} \phi}{d t^{2}}+\frac{1}{R c} \cdot \frac{d \phi}{d t}+\frac{\phi}{L c}
$$

' Φ ' can be the current in any of the branches (or) voltage across the circuit

$$
F(t)=\frac{d^{2} \psi}{d t^{2}}+\frac{R}{L} \cdot \frac{d \psi}{d t}+\frac{\phi}{L c}
$$

 int through the Cilciut.

Time constant for parallel circuit $T_{p}=\beta C$
Time constant for series Circiat $T_{S}=L / R$
he product of ' 3 ' time constants is the square the angular period of the undamped circuit

$$
\begin{aligned}
& \text { Which is given by } \\
& \text { The } T_{s}=L C=T^{2} \\
& \text { Here } \eta=\frac{R}{20}=R\left(\frac{C}{L}\right)^{1 / 2}
\end{aligned}
$$

The parameter ' η ' is given by the ratio of resistance " R ' to the surge Impedance no.
The ratio of the parallel circint time constant to the series circuit time constant is equated to η^{2}

$$
\frac{T_{p}}{T_{S}}=\frac{R^{2} C}{L}=\eta^{2}
$$

The relationship leads to a duality in the andy of the series \& parallel circuits.

Smile Masc phenomena in these two circuit
Simple the solutions to the fillinions ark Complisand.d.

Step 1:- Find the L.T that appears regularly in the Operational solutions for problems.
Step:- Determine their inverse transform.
Step 3 - Plot the universe transforms in dimension less curves using 2 .
Stop 4 :- Extract the solutions from this curves.
Basic transform of RLC Circuit:-
(a) Parallel Rhee Circuit:

To determine the solution for the inductor in parallel circuit.

When a siritch is closed in the Capacitor branch allowing ' C ' to discharge through ' R ' A ' L '.

Let the current through the inductor is " I " The current from the capacitor must be equal to The sum of the currents in the otter ' α ' branches.

$$
-c \cdot \frac{d V_{c}}{d t}=I_{r}+\frac{V_{c}}{R}
$$

$$
V_{C}=L \cdot \frac{d I_{L}}{d t}
$$

Elimination ' V_{c} ' from eq (1) $(\operatorname{sub}(1)$ in (2))

$$
-C \cdot L \cdot \frac{d^{2} I_{L}}{d t^{2}}=I_{L}+\frac{L}{R} \cdot \frac{d I_{L}}{d t}
$$

Rewriting the above eq

$$
\begin{equation*}
\frac{d^{2} I_{L}}{d t^{2}}+\frac{1}{T_{p}} \cdot \frac{d I_{L}}{d t}+\frac{I_{L}}{L_{C}}=0 \tag{3}
\end{equation*}
$$

where $T_{p}=R C$

$$
L C=T^{2}
$$

By taking LT of eq (3) we get

$$
\begin{gathered}
\left(S^{2}+\frac{S}{T_{p}}+\frac{1}{T^{2}}\right) i_{L}(S)=\left(S+\frac{1}{T_{p}}\right) I_{L}(0)+I_{L}^{\prime}(0) \\
V_{c}(0)
\end{gathered}
$$

When $I_{L}(0)=0, \quad I_{L}^{\prime}(0)=\frac{V_{c}(0)}{L}$
es (t) becomes

$$
\hat{U}_{L}(S)=\frac{V_{C}(0) \frac{1}{L}\left(S^{2}+\left(S / T_{P}\right)+\left(1 / T^{2}\right)\right.}{\text { pomes }}
$$

The roots of the equation

$$
S^{2}+\frac{S}{T_{P}}+1 / T^{2}=0 \text { are }
$$

$$
\begin{aligned}
& a=1, b=\frac{1}{T_{p}}, \quad c=1 / T^{2} \\
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \frac{-\frac{1}{T_{p}} \pm \sqrt{\left(1 / T_{p}\right)^{2}-4(1)\left(1 / T^{2}\right)}}{2(1)}
\end{aligned}
$$

The two roots

$$
\begin{aligned}
& S_{1}=-\frac{1}{2 T_{p}}+\frac{1}{2}\left(\frac{1}{T_{p}^{2}}-\frac{4}{T^{2}}\right)^{1 / 2} \\
& S_{2}=-\frac{1}{2 T_{p}}-\frac{1}{2}\left(\frac{1}{T_{p}^{2}}-\frac{4}{T^{2}}\right)^{1 / 2}
\end{aligned}
$$

Then,

$$
i_{L}(s)=\frac{V_{c}(0)}{L\left(\frac{1}{T_{p}^{2}}-\frac{4}{T^{2}}\right)^{1 / 2}}\left[\frac{1}{\left(s-s_{1}\right)}-\frac{1}{\left(s-s_{2}\right)}\right]
$$

Take Inverse $\alpha \cdot T$.

$$
\hat{L}_{L}(t)=\frac{V_{t}(0)}{L\left(\frac{1}{T_{p}^{2}}-\frac{4}{T^{2}}\right)}\left(e^{+s_{1} t}-e^{s_{2} t}\right)
$$

The solution for this Circuit depends upon the values of $S_{1}^{\prime} \& ~ ' s_{2}^{\prime}$.

$$
\text { If } \frac{1}{T_{p}^{2}}>\frac{4}{T^{2}} \quad\left(S_{1} \& S_{2} \text { are real }\right)
$$

If $\frac{1}{T_{p}^{2}}<\frac{4}{T^{2}} \quad\left(S_{1} \& S_{2}\right.$ are complex $)$.
These conditions can be expressed in terms of ' 2 '
where $\eta=R / 20$

$$
\text { If } \frac{1}{T_{p}^{2}}>\frac{4}{T^{2}} \text { then } \eta<1 / 2
$$

$$
\text { If } \frac{1}{T_{p}^{2}}<\frac{4}{T^{2}}, \text { then } 2>1 / 2
$$

When the roots are Complex, $2>1 / 2$

$$
\begin{aligned}
& S_{1}=\frac{-1}{2 T_{p}}\left[1-j\left(4 \eta^{2}-1\right)^{1 / 2}\right] \\
& S_{2}=\frac{-1}{2 T_{p}}\left[1+j\left(4 \eta^{2}-1\right)^{1 / 2}\right]
\end{aligned}
$$

Now

$$
I_{n}(t)=\frac{V_{c}(0)}{L} \frac{2 T_{p} e^{-1 / 2 T_{p}}}{\left(4 n^{2}-1\right)^{1 / 2}} \sin \left(4 \eta^{2}-1\right)^{1 / 2} t / 2 T_{p}
$$

When the hots are real, $\ell<1 / 2$.

$$
\begin{aligned}
& S_{1}=\frac{-1}{2 T p}\left(1-\left(1-4 n^{2}\right)^{1 / 2}\right) \\
& \left.S_{2}=\frac{-1}{2 T p}\left[1+\left(1-4 \eta^{2}\right)^{1 / 2}\right)\right]
\end{aligned}
$$

Now

$$
I_{L}(t)=\frac{V_{c}(0)}{L} \cdot \frac{2 T_{p} \cdot e^{-t / 2 T p}}{\left(1-4 \eta^{2}\right)^{1 / 2}} \sinh \left(1-4 \eta^{2}\right)^{1 / 2} \cdot t / 2 T_{p}
$$

when $\eta=1 / 2$

$$
I_{L}(t)=\frac{V_{c}(0)}{L} t \cdot e^{-t / 2 T_{p}}
$$

For diff values of " 2 ", the inductor Current is plotted from this Curves we can extract the solutions at any instant.

工

$$
2>1 / 2 \quad(\text { underdamped })
$$

$\eta=1 / 2$ (Critically damped)
(($\left.^{(}\right)$

b) Series RLC circuit:-

Suppose a battery of voltage is connected to Series RLC Circuit, then

$$
I_{R}+L \cdot \frac{d I}{d t}+\frac{1}{c} \int I d t=V
$$

Diff and Rearranging

$$
\begin{aligned}
& \frac{d^{2} I}{d t^{2}}+\frac{R}{L} \cdot \frac{d I}{d t}+\frac{1}{L C}=0 \\
& \frac{L}{R}=T_{S}
\end{aligned}
$$

Then $\frac{d^{2} I}{d t^{2}}+\frac{1}{T_{s}} \frac{d I}{d t}+\frac{1}{T^{2}}=0$
'T of the above eq

$$
\begin{aligned}
& \text { r of the above eq } \\
& \left(s^{2}+\frac{s}{T_{s}}+\frac{1}{T^{2}}\right) i_{S}(s)=\left(S+\frac{1}{T_{s}}\right) I(0)+I^{\prime}(0)
\end{aligned}
$$

If the current starts from Zero, then $I(0)=0$

$$
\begin{aligned}
& \pm^{\prime}(0)=\frac{V}{L} \\
& i(s)=\frac{V}{L} \frac{1}{\left(s^{2}+\frac{s}{T s}+1 / T^{2}\right)}
\end{aligned}
$$

Then
for osculatory Condition if $\lambda>1 / 2$ Where $\lambda=\frac{1}{2}=\frac{2_{0}}{R}$
At oscillatory condo

$$
I(t)=\frac{V}{L} \cdot \frac{2 T_{s}}{\left(4 \lambda^{2}-1\right)^{1 / 2}} e^{-1 / 2 T_{s}} \cdot \sin \left(4 \lambda^{2}-1\right) \cdot \frac{t}{2 T_{s}}
$$

When $\lambda=1 / 2$, Critical damping

$$
I(t)=\frac{V}{L} t e^{-t / 2 T_{s}}
$$

When $\lambda<1 / 2$, (Over damped Condition)

$$
I(t)=\frac{V}{L} \frac{2 T s}{\left(1-4 \lambda^{2}\right)^{1 / 2}} e^{-1 / 2 T s} \sinh \left(1-4 \lambda^{2}\right)^{1 / 2} \cdot \frac{E}{2 T s}
$$

For this Current equations curves are plotted for various values of " λ '. From this curves the solutions canbe (1) extracted at any instant.

UNIT-II SWITCHING TRANSIENTS.
Resistance Surtching:-
A delibrate Connection of a resistance in parallel with the Contact space (arc) is made to overcome the effect of transient recovery voltage. This is known as Resistance sirtching.
\rightarrow The shunt resistors connected across the circint breaker have ' 2 ' functions
\rightarrow To distribute the transient recovery voltage more uniformly across several breaks.
$\rightarrow T o$ reduce the severity of transient recovery voltage at the time of interruption by irgtroducing damping into oscillation.

The resistance connected must be low compared with the reactance of Capacitance Shunting the breaks at the frequency of recovery transient
\rightarrow The lower value of resistor is only required to reduce the transient recovery voltage.
$L \Rightarrow$ Item Inductance
$c \Rightarrow$ Stray Capacitance which shunts the Preaker
$R \Rightarrow$ Resistor used to modify the recovery transient.
When fault, current has been siotched a residual current will fou through resistor ' R '. This must be interrupted by opening the auxillary interompter's'

From this we know that if the value of Resistance ' R ' is equal to or less than $\frac{1}{2} \sqrt{L_{c}}$, the oscillatory nature of transient will not be there
\rightarrow The rate of rise of restriking voltage will be latin permissible limits of Circiit breaker.
for Critical clamping

$$
R=\frac{1}{2} \sqrt{L / c}
$$

When $k=\infty$
When $R>\frac{1}{2} \sqrt{L / C}$

When $R<\frac{1}{2} \sqrt{L / C}$

We know

$$
\frac{V}{s}=\left(R L C S^{2}+L S+R\right) I_{2}(s)
$$

Now

$$
\begin{aligned}
& \omega I_{2}(s)=\frac{V}{S\left[R L C S^{2}+L S+R\right]} \\
& I_{2}(s)=\frac{V}{S(R L C)\left[S^{2}+\frac{1}{R C}+1 / L C\right]} \\
& I_{2}(s)=\frac{V / R L C}{S\left[S^{2}+\frac{1}{R C}+1 / L C\right]}
\end{aligned}
$$

On resolving $I_{2}(s)$ we get

$$
I_{2}(s)=\frac{V}{R}\left[\frac{1}{s}-\frac{s+x}{(s+x)^{2}+(\sqrt{3})^{2}}-\frac{x}{(s+x)^{2}+(v)^{2}}\right]
$$

Here $x=\frac{1}{2 R C}$

$$
y=\frac{1}{2 c}-\left(\frac{1}{2 R C}\right)^{2}
$$

Taking L-T of $\hat{i}_{2}(s)$

$$
i_{2}(t)=\frac{V}{R}\left[1-e^{-x t}\left[\cos \sqrt{y} t+\frac{x}{y} \sin \sqrt{y} t\right]\right.
$$

The natural freq of oscillation is given by

$$
f_{n}=\frac{1}{2 \pi} \sqrt{\frac{1}{L c}-\frac{1}{4 c^{2} R^{2}}} .
$$

In air blast circuit breaker, it is observed that the rate at which dielectric strength of the gap increases is lower than the coil CB

This is because, the air has much lower dielectric strength than the gases at same temp and pressure in the oil C.B.

Dielectric strength of gas increases with pressure. Thus the air blast CB is more sensitive to the rostriking voltage transient.

In low (or) medium voltage air blast $C B$, the rate of rise of restriking volt is higher.

The shunt resistors are used for low \& Medic voltage air blast $C B$.

The rate of the rise of restriking volt is Rigi Shunt Resistors are used for low \& Medium voltag blast CB.

In case of oil $C B$, the resistance surtching is not employed as it is not sensitive to RRRV. If the injected current is treated as a ramp With slope $\frac{V}{L}$

$$
I=\frac{V}{L} t
$$

Where ' V^{\prime} - Instantaneous voltage at time of interruption

$$
V(S)=\frac{1}{S\left[S^{2}+\frac{S}{S T_{p}}+\frac{1}{T^{2}}\right]} \frac{I^{\prime}}{C}
$$

Where I' $=V / L$

Different values of $2=R / 2$

For Change in " R ', the ' 2 ' is modified, hence the transient voltage produced is also Changed.

When the resistor current is subsequently interrupted, a second transient curl be initiated. I To study it is necessary to introduce the Capacitance C ', Shunting the resistor break. F-quivalent Circiut

Load Switching:-
The frequent function performed by sirtching evices are to switch "ON" and "OFF" the load (ie) Dad sirtching which is represented by parallel RL Circuit Circuit

Low P.f loads are Inductive High P.f loads are resistive
Then high P.f load is switched off, the effective pacitance of load becomes important in determining te form of transient produced.

Simple equivalent circus
Then the Current extinguishes, the voltage access load " " V_{0} '. Now ' C ' is changed upto voltage ' V_{0} ' and it discharged through ' L ' \& " R ".
As the P.f improves, the Current Comes more more into phase with voltage. Thus "vo" decreases

$\left\{\begin{array}{l}\text { Damped oscillatory discharge } \\ \text { Transient voltage across lad }\end{array}\right\}$

Transient voltage across siortch.
At UPF, voltage is zero, when current is zero. Thus No transient at all.

Thus the P.f plays a major role in the production of switching transient \& magnitude of surtching transient depends on the P.f.

Arc furnace in industries operate at a low voltage and high current \& Consequently
feet by a step down furnace transformer. Thu are characterised by low P.f and frequency.

Switching Capacitors are frequently connected to high voltage bus to improve the P.f.

They are sirtched with the transformer \& Furnac

Transformer

Schematic representation
(b) Equivalent circuit of arc Furnace

In fig (9), the transformer rating is 60 Hz , 13.8 kV 20 MVA Star/star Connected \& solidly grounded at fully load $P \cdot f=0.6$.
To investigate the transient evoked by siriching off the folly loaded transformer. We have to determine load current,

$$
\text { Load current }=\frac{K V A}{\sqrt{3} \times K V}=836.8 \mathrm{~A}
$$

$$
\begin{aligned}
& \text { Total } z=\frac{k v}{(\sqrt{3})(\text { Load Current })}=9.52 \Omega \\
& Q=\cos ^{-1}(0.6)=53.13 . \\
& \text { Total " } R^{\prime \prime}=2 \cos \psi=5.7 \Omega \\
& \text { Total' } X^{\prime}=2 \sin \psi \\
&=7.6 \Omega \\
& L=20.2 \mathrm{mH}
\end{aligned}
$$

When the current $I(s)$ is interrupted at current Zero, the currents ' I_{C}^{\prime} ' and ' I ' are equal \& opp.

$$
\begin{aligned}
I_{c}(0) & =-I(0)=I \sin \psi \\
& =669.4 \mathrm{~A}
\end{aligned}
$$

The post interruption transient can be computed

$$
V_{c}(0)=0
$$ from the Circiut with initial Condition \& as in eq.

Phasor diagram of loaded arc furnace.

Now the Current is given by

$$
\begin{aligned}
& \frac{d^{2} I}{d t^{2}}+\frac{1}{T s} \frac{d I}{d t}+\frac{1}{T^{2}}=0 \\
& (s)\left[s^{2}+\frac{s}{T s}+\frac{1}{T^{2}}\right]=\left(S+\frac{1}{T s}\right) \underset{\longrightarrow(0)+I^{\prime} / 0}{ } .
\end{aligned}
$$

Ne know.

$$
\begin{gather*}
L \cdot \frac{d I}{d t}+I R=V_{c} \\
I^{\prime}(0)+I(0) \cdot R=V_{c}(0)=0 \\
I^{\prime}(0)=-I(0) \cdot \frac{2}{L} \\
I^{\prime}(0)=\frac{-I(0)}{T S} \tag{3}
\end{gather*}
$$

ub(3) in (1) we get.

$$
i(s)=\frac{s}{\left(s^{2}+\frac{s}{T s}+\frac{1}{T^{2}}\right)} I(0)
$$

Compute transformer terminal voltage

$$
\frac{d^{2} v_{c}}{d t^{2}}+\frac{1}{T s} \cdot \frac{d v_{c}}{d t}+\frac{v_{c}}{T^{2}}=0
$$

$$
\begin{aligned}
& V_{c}(s)\left[s^{2}+\frac{s}{T s}+\frac{1}{T^{2}}\right]=\left[S+\frac{1}{T s}\right] V_{c}(0)+V_{c}^{\prime}(0) \\
& c \cdot \frac{d V_{c}}{d t}=-I ; \quad V_{c}^{\prime}(0)=\frac{-I(0)}{c} \rightarrow(7
\end{aligned}
$$

Sub (7) in (6) we get

$$
V_{c}(s)=\frac{1}{\left(s^{2}+\frac{s}{T s}+\frac{1}{T^{2}}\right)} \frac{I(0)}{c}
$$

Here peak voltage reaches about 72% of undamped Value The foist voltage after current zero.

$$
=0.72 \times 669.4 \times 11.4=5.49 \mathrm{kV}
$$

$$
\text { Since } I(0)=-669.4 \mathrm{~A}
$$

Normal \& Abnormal Switching transients:-
When a switch opens in 1ϕ circiut, it is possible for the recovery voltage to reach a value tine as high as normal peak voltage of the system.

When the siritch closes, the current can reach a value twice that of the eventual steady state current

But in practical circuits, this theoretical magnitudes current \& voltages are not achieved, because of ircuit damping.
Due to some other circumstance like transients, voltage \& Current magnitude may rise high.
The transients occur due to the trapping of ener its subsequent release somewhere in the circuits. Such transients are referred as Abnormal current. voltage transients.

It is also caused due to charge on a Capacitor line \& current in an indictor. If a circuit is ompletely quiescent when a transient is initiated, te transient will be a normal transient.
The transient stores energy in the system, So that subsequently when a second transient is initiated it would be abnormal.
When the initial current $I_{1}(0)$, voltage across the Capacitor $V_{2}(0)$ \& Current thought Capacitor $I_{2}^{\prime}(0)$ is finite, then an abnormal transient vile develop in the System.

Capacitance Surtching:-
The shunt Capacitor bank plays an important role in power systems.

The shunt Capacitors are connected between the line \& neutral (or) line \& ground.

The Shunt Capacitors are employed to correct a lagging P.f, to provide voltage support for the system. In some applications, they are suriched in \& out Quite frequently as the system load varies of the System voltage fluctuates.

The switching operations are non-truicial \& thould be Carefully Considered when designing Capacitor banks and their associated switching equipment.
This is called as Capacitance sirtching.
The switching operation may be unsuccessful due to the recognition (or) restating of the switch during opening.

From the figure, it is clear that there is a relative phase. of current \& voltage, since the current leads the voltage by 90°. When the siortch interrupts, the Capacitor is fully Charged to maximum Voltage.

When surich opens, the capacitance is now isolated from the source, retains its charge. When the capacitor tries to retain its charge, the Voltage across the surtch reaches a peak value of 2 V , which is potentially dangerous.

When a Capacitor is connected to a system, the leading Current that it draws flowing through the inductance of the system, causes the capacitor Voltage to le higher than the Open Circuit system voltage.

This Condition is called as Terranti Rise (or) Negative Realtor Capacitance Switching showing the effect of source Regulation:-

\Rightarrow This is the event where the capacitor is disconnected from the source.
\Rightarrow The potential of the source side of the circuit Creaked will retwon to the lower value after some Oscillations if the capacitor has been divonnected. The oscillations are produced due to the presence of source inductance and stray Capacitance adjacent to the breaker on the source side.

Capacitance Switching with a restrike:-
Consider a restrike that takes place when the voltage reaches its peak. During this instant, the Capacitor voltage subjected to oscillation due to this sudden disturbance.

Freq of such oscillation " f_{0} " $=\frac{w_{0}}{2 \pi}=\frac{1}{2 \pi(L C)^{1 / 2}}$
Where ' L ' \Rightarrow Inductance of the Supply
"C" \Rightarrow. Capacitance of the bank.
The restrike current will le the instantaneous voltage across the sirtch divided by the Circiut surge Impedence.

$$
\begin{aligned}
& \text { e Smpedence. } \\
& \text { Restrike Current }=\frac{2 V_{p}}{\left(\frac{L}{C}\right)^{1 / 2}} \sin \omega t \\
&=2 V_{p}\left(\frac{C}{L}\right)^{1 / 2} \sin \omega t
\end{aligned}
$$

The figure shows the initial clearing, trapping of charge on the Capacitor \& the subsequent restrike.
 60 Hz current
When the circuit breaker interrupts, the current at point ' A ', the voltage across the Capacitor is thigh (Appro 3 times the peak value V_{p}).

The transient voltage excursion to $3 V_{p}$ is an abnormal overvoltage by the definition and is the Consequence of energy stored in the Capacitor at the time of restrike.

Capacitance Surtching with multiple restrike:-

During Capacitance Surtching, practically there is a hance of sequential restrikes. The fig represents the sequential restrike and ' C_{2}^{\prime} ' represents seibsequent Clearings. The sequence is idealised \& to some extent oversimplified.
foray : In practice Restrike will not occur precisely at the Voltage peak, so that the
voltage if it escalates, does more slowly. Again the Circuit becomes more Complicated.

Some cap will exist on the source fiche of the breaker, which will inproduce higher freq of disturbances.

When the multiple restriking occurs, it is possible for a voltage of $4 /$ unit to be developed across the switch, a point which is often overlooked.

A re ignition may occur at this time rather than half a cycle later which id propally result in the switch Conducting current for another half cycle.

Current suppression and other problems can arise during Capacitance Switching Operations which are the examples of overvoltages Caused by the release of stored energy in the system.

FERRO RESONANCE
In the series resonance circuits, a very high voltage Can appear across the elements of a series ' $L c$ 'circus When it is excited at (or) near its natural frequency.
V_{1} ' $\& V_{c}$ ' add to give the Applied voltage " V ".
But the voltage across the inductor leads the
wrrent in phase by 90°, the capacitor voltage ags the Current by the same amount.

Simple series resonance
If it is seen that both V_{h} and V_{c} can far exceed voltage Conditions of this kind can be sustained nd therefore Called as Dynamic Qvervoltages ratter than ransients.

Such resonant Conditions are to be avoided in over circuits. This phenomenon such that both ' V_{L} ' ' V_{c} ' ar exceed ' V ' is called ferroresonance. This condition across in the pow circuit since the inductance involved is usually icon cored and rove often than not a ransformes. The non-linear character of an ion lad inductance also inproduces some peculiar effects.

The voltage across the inductance will depend upon the frequency " ω " and the current through a function ($f(I)$). Thus voltage can be written as $V_{L}=\omega f(I)$.
' V_{L} ' is plotted as a function of current. This Voltage url lead the current by 90°.

The voltage across the inductance will clepend upon the frequency " ω " and the current through a function $f(I)$. Thus voltage can be written as $V_{L}=\omega f(I)$. ' V_{L}^{\prime} is plotted as a function of current. The voltage will lead the current by 90°. The voltage across the Capacitor is given by

$$
V_{c}=-\frac{1}{\omega c}
$$

The -re' sign indicates that it is antiphase with " V " and lags the Current by 90°.

The total voltage url be

$$
V=V_{L}+V_{c}=\omega f(I)-\frac{1}{\omega c}
$$

(or) $\quad V_{L}=V+\frac{1}{\omega c}$
From the $e q$ above, it is clear that ' V_{L} ' has a fried Consistent ' V ' and that is proportion to "I".

Since both the Curves ' A ' and ' B ' represent the V_{L}, the Operation point must le where the ' 2 ' lines cross at ' P '. The Capacitor voltage in this
instance ' $P Q$ ' and the inductor voltage $P B$ which exceeds V, whereas the Current is given by $O B$.

It is noted that the voltage i v ' applied to the pacitor alone, it would take a much lagger current
c, lat if applied to the inductor alone, the current ould le smaller current I_{L}.
The slope of the inclined line is given by $\tan \alpha=\frac{1}{\omega c}$.
If the value of " ω " (or) ' C ' is reduced, the slope url norease \& the intersecting point ' P ' will progress up the an

Voltage \& current relationship in Ferroresonant Circuit.

Ferrol Resonance in a power Cirint Mirth Series Combination of a capacitor \& a linear inductor:

The fig illustrates the graphical representation of the Operating Conditions with a series connected capacitor \& linear inductor.

The characteristic of the capacitor is given by JK (or) IK' according to the value of capacitor. The operating point point will be 'P' (or) P^{\prime} '.

If the values $\omega_{L}>\frac{1}{\omega_{C}}$, the operating point is at " P " and if the values $\omega_{L}<\frac{1}{\omega_{c}}$, the operating pt is P ". If ' C ' is reduced, $J K$ becomes stepper and I' K ' becomes less steep.

Ferroresonance situation:-
A practical Example.

A birch used to energise and Deenergise the primary of the transformer. The siritch is interconnected to the primary by a length of cable. The suriching deirce may be mounted at the top of a pole \& a transformer. on a near pad at ground level.

Consider only one pole of the surtch is closed, then the transformer is not energised. Thus there is a path for the flow of current through ' 2 ' of the phase windings and the cable capacitance is obtained.

This current flowing in the specified path can produce resonance \& impress excessive voltage across the transformer and the cables on the unerergised phases.

It can cause lighting arrestor Connected to $B \notin C$ lrushings of the transformer to operate. If the condition is sustained, repeated operation Can destroy the arresters.

There is a possibility of ferroresonant overvoltages On Y - Δ transformer banks during the single phase suritching as a function of transformer sine and length of the cable.

Neutral

Power System Transients

Lightning Transients
The voltage waves having magnitude more than its normal value and which romains for a very short duration are called over voltage surges or transient vervoltages.
\rightarrow The overvoltages occur due to lightning surges re Called lightning transients.
\rightarrow There is a high rate of rise and high peak value in transient over voltages which is dangerous for insulators \& hence protection is required against then wee voltages.
Causes of over voltages:-
Overvoltages are Caused due to voltage stress.

External Over voltages
Internal Over voltages
$\|_{1}$
ver voltages originate
rom atmospheric
disturbance mainly due
to lightning.
(1) Direct lightning strokes
\rightarrow Electromagnetically induced voltages due to lightning discharge taking place near the line \rightarrow Voltage induced due to changing atmospheric Condition along the line length.
\rightarrow Electrostatically induced over voltages due to the presence of Charge Clouds
\rightarrow Electrostatically induced over voltages due to the friction a effects of small particles such as dust or dry snow in the atmosphere or due to change in the altitude of the line Internal overvoltage
\rightarrow Switching overvoltages (Br) Transient overdetages of
high fer). high frs).
\checkmark Temporary Over vollages (Steady state overvollages of power freq)
Switching overvoltages
Es:- (1) Surtching ON \& OFF the equipments
(2) Surtcing of a transformer at no load.
(2) Opening of a CB in order ta clear a fault

Over voltage Factor (or) Amplitude factor

$$
\begin{aligned}
& \text { Over voltage factor }= \text { Peak Over voltage } \\
& \text { Rated peak system frequency } \\
& \text { Phase voltage. }
\end{aligned}
$$

Comparison

Lightning Overvoltajes It is a natural phenomenon

The magnitude of ightring voltages appearing. transmission lines doesn't depend on inc design
If the System operating Page is less than 500 kV , ightring overvoltages have to be Considered

Surtching Overvoltages
(1) They originate in the syste itself $l y$ the connection and disconnection of $C B$ contacts or due to initiation of faults
(2) Suritching overvollages are proportional to operating Voltage.
(2) If the system operating Dotage is in the range of 300 KV to 765 kV both switching overwltages \& lightning over vollages have to be conindered.

Charge formation in clouds:-
During thunderstorms, positive and negative Charges become seperated by the Leary air currents isth ice Crystals in the upper part and rain in the lower parts of the cloud.

This charge seperation depends on the height of Clouds which rang from 0.2 to 10 km with their Charge centers probably at a distance of 0.25 to 2 km .
\rightarrow The charge inside the cloud may be as high as
\rightarrow Clouds may have a high potential as $\frac{10^{7} \text { to } 10^{8} \mathrm{~V} \text {. }}{100 \mathrm{~V} / \mathrm{cm} \text { to } 10 \mathrm{kV} / \mathrm{cm}}$ witt field gradients hanging from
\rightarrow The energies associated witt the cloud discharges can be vary high
\rightarrow It is leheived that the upper regions of the Cloud are usually positively charged whereas the lower region \& the base are predominantly negative except the local region near the base the head is positive.
empson's Theory
\rightarrow '3' essential regions in the cloud to be Con is a for charge formation. -
\rightarrow Below region " A ", air current travel above 800 cn nd no raindrops fall through.
\rightarrow In region "A", air Velocity is high that is enough - break. The falling raindrops Causing a positive Charge pray in the cloud and negative charge in the air The spray is blown upwards, but as the velocity - air decreases, the positively Charged water drops recombin eth the lager drops and fall again.
\Rightarrow Thus region' A " becomes predominantly positively charged while region "B" above it becomes negatively harged by air currents.
\rightarrow In the upper regions in the cloud, the temperature
low (Below freezing point) and only ice Crystals exist
The impact of air on these crystals make them egatively charged, thus the distribution of the charge rithin the cloud is shown in the figure below.

Crowd mood according to simpson's theory.

Reynolds and Mason Theory:
\rightarrow According to this theory, the thunder clouds are clueloped at heights of 1 to 2 km above the ground level.
\rightarrow They may go up to 14 km above the ground.
\rightarrow For the charge formation air currents in the Clouds moisture and specific temperature range are required
\rightarrow The cir current controlled by the temperature gradient move upwards Carrying -moisture 1 water droplets.
\rightarrow The temperature is $0^{\circ} \mathrm{C}$ at about 4 km from the ground and may reach $-50^{\circ} \mathrm{C}$ at about 12 km height. \rightarrow The water droplets dons freeze as soon as tamp is $0^{\circ} \mathrm{C}$. They freeze only if the Temperature is below $-40^{\circ} \mathrm{C}$.
\rightarrow They form solid particles on which Crystalline ice
patterns develop and grow.
\rightarrow In clouds the effective freeing temperature is $-33^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$.
\rightarrow The water droplets in the thunder cloud are \qquad up by air currents and Gets super cooled.
\rightarrow When such freezing occurs, the Crystals grove: urge masses and due to their weight \& gravitation force start moving downwards.
\rightarrow Thus a thunder Cloud Consists of super cooled wc hoplets moving upwards and large hail stones noving downwards.
When the upward moving Super Cooled water droplets ct on Cooler hail stone, it freezes partially. Que to this the Outer layer of the water droplets breezes forming a shell with water inside.
When the process of Cooling extends to inside armer water in the Core, it expands thereby plintering and spraying the frozen ice shell. The splinters being fine in size are moved up of the air Currents and carry a net positive Chase n the upper region of the Cloud.
\rightarrow The hail stones that travel downwards Carry on equivalent negative charge to the lower regions of the cloud and thus negative charge builds up in the bottom side of the cloud.
\rightarrow According to Mason, the ice splinters should carry only positive charge upwards.
\rightarrow Water being ionic in nature, has the Concentration of H^{+}and OH^{-}ions
\rightarrow The ion density depends on the temperature
\rightarrow Thus in an ice slab with upper \& lower surfaces at temperature T_{1} and $T_{2}\left(T_{1} \subset T_{2}\right)$, there will le a higher Concentration of ions in the lower region.
$\rightarrow \mathrm{H}^{+}$ions are much lighter and they diffuse much faster all over the volume
\rightarrow The lover portion (warmer) has a net negative charge density $(\mathrm{OH}$) and hence the upper portion (cooler) has a net positive charge density $\left(\mathrm{H}^{+}\right)$
\rightarrow The outer shells of the frozen water droplets Coming into Contact with hail stones will be relatively cooler and acquire a positive charge.

When the shell splinters, the charge carried by them in the upward direction is posture. According to the Reynold's theory, the hail packets get negatively charged when impinged ponby the warmer ice crystals.

When the temperature Conditions are reversed, the charging polarity reverses. This type of phenomenon also occurs in thunder clouds.

Rate of charging of thunder Clouds:-
Mason Considered thunder Clouds to consist of uniform mixture of positive \& negative charges Due to hail stones and air currents, the charges seperate vertically.

If ' λ ' is a factor which depends on the Conductuirty of the medium, there will be a resistix leakage of charge from the electric field built up and this should be taken into account for loud Charging.

Let
$E \Rightarrow$ Electric field intensity
$V \Rightarrow$ Velocity of separation of Charges.
$P \Rightarrow$ Charge density in the cloud.
Then
Electric field intensity ' E ' is given by

$$
\begin{align*}
& \frac{d E}{d t}+\lambda E=e V \rightarrow(1 \tag{1}\\
& \frac{d E}{d t}=Q V-\lambda E \rightarrow 2 \\
& E=\frac{Q V}{\lambda}[1-\exp (-\lambda t)] \tag{3}
\end{align*}
$$

At $t=0, E=0$, (There is no separation initially)
Let
$Q \Rightarrow$ Seperated charge, $A \Rightarrow$ Area of the claud
Q $g \Rightarrow$ Generated charge, $h \Rightarrow$ Height of the Charged Region.
$M \Rightarrow$ Electric moment of the thunder storm.

$$
\begin{align*}
& P=\frac{\theta g}{A h} \rightarrow 4 \\
& E=\frac{Q_{s}}{A s_{0}} \rightarrow 5
\end{align*}
$$

Sub: (4) in (5) we get

$$
\begin{align*}
& \frac{Q_{s}}{A \varepsilon_{0}}=\frac{\theta_{g} V}{A h \lambda}[1-\exp (-\lambda t)] \\
& \theta_{g}=\frac{\theta_{s} h x}{V[1-\exp (-\lambda t)] \varepsilon_{0}}=\frac{\mu}{V(1-\exp (-\lambda t))}
\end{align*}
$$

Where

$$
\mu=Q_{s} h
$$

The average values observed for thunder-clouds are

$$
\text { Time constant }=1 / \lambda=20 \mathrm{~s}
$$

$$
\text { Electric moment }(A)=110 \mathrm{c}-\mathrm{km} \text {. }
$$

Time for the foist lightning flash to appear, $t=20 \mathrm{~s}$ Velocity of seperation of charges, $V=10$ to $20 \mathrm{~m} / \mathrm{s}$ Sub the values in eq (6) we get

$$
\begin{aligned}
& Q_{g}=\frac{20,000}{V} c \Rightarrow \frac{20,000}{20}=1000 \mathrm{C} \\
& Q_{g}=1000 \mathrm{C} \text { for } V=20 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Mechanism of Lightning strokes:-
The Mechanism of lightning strokes to ground involve the following
\rightarrow The breakdown of virgin air Column between the Cloud \& earth by the stopped leader as it progresses from the cloud to earth, lowering down the negative Charge on the base of the cloud.
\rightarrow Subsequent passage of a large amount of positive Charge from the earth to the cloud through the Conducting channel produced by the stepped leader

The sequence of events in a lighting discharge is as follows
Propagation of sloped leader:-
\rightarrow Critical breakdown voltage $=10 \mathrm{kv} / \mathrm{cm}$

Mechanism of Lightning strokes:-
\rightarrow Breakdown of virgin air Column between the Cloud \& earth by the stepped leader as it progresses from the cloud to earth, lowering down the negative charge on the base of the cloud.
\rightarrow Subsequent passage of a large amount of positive charge from the earth to the cloud through the Conducting channel produced by the stepped leader
Sequence of events in a lighting discharge
(1) Propagation of stepped leader
(2) Return stroke
(3) Multiple strokes
(4) Return stroke current.

Propagation of stepped leader:-
\rightarrow Critical breakdown voltage is $10 \mathrm{KV} / \mathrm{cm}$ in a Cloud region occupied by the water droplets $30 \mathrm{KV} / \mathrm{cm}$ in air without water droplets.
\rightarrow When the field at some point in a charge Concentrated cloud exceeds $10 \mathrm{kV} / \mathrm{cm}$, an electric

Streamer with plasma starts towards the ground with a velocity of about $1 / 10$ times that of a light.
\rightarrow A downward streamer towards the ground is formed.
\rightarrow Negative charges on the base of the cloud are lowered down the streamer.
\rightarrow The streamer can progress only about $50 \mathrm{~m}(o r)$ so towards the ground before coming to halt and emitting a leright flash of light at its head.
\rightarrow This is due the fact that some of the positive ions produced in the streamer recombine with negative charges.
\rightarrow This tends to reduce the Conductivity of the channel to such an extent that the electrons at the head of the streamer don't obtain the necessary push to proceed on their way after a time. \rightarrow With the channel losing its conductivity, sufficient charges from the Cloud cannot be lowered down to keep the electric field stress in front of the avalanche to a value, which ensures the progress of the streamer.

Characteristics Of Lightning strokes
The parameters \& Characterntics of lightininginclude
(1) Amplitude of the currents
(2) Rate of rise
(2) Probability distribution of the rate of rise
(4) Waveshapes of the lightning voltage A current

$$
\text { Time }(M S)
$$

(c) Ont transmission line tower (Bergen)

The fig (a), (b) (c) $\&$ (d) indicates the typical lighting current oscillograms.

Fig (e) \& (\oplus indicates the typicd lightring stroke Voltage on a transmission line wittout ground wire.

The lightning current oscillograms indicate
\rightarrow Initial high current portion has short front times unto $10 \mu \mathrm{~s}$.
\rightarrow The high current peak lasts for some tens of Ms followed by the duration low current position for several milliseconds.
Lightning currents are measured
\rightarrow Driectly from high towers or buildings
\rightarrow From the transmission tower legs
Other Important Characteristic:-
\rightarrow Time (or) peak value
\rightarrow Its rate of arse
Specification of lightning stroke current:-
\rightarrow Pear amplitude $>100 \mathrm{kM}$
\rightarrow Rate rf rise $1.5 \mathrm{KA} / \mathrm{ms}$ to $25 \mathrm{kA} / \mathrm{ms}$
\rightarrow Duration of stroke currents 30 Nes .

Specification \& of lightning stroke voltages (a))
\rightarrow Peak amplitude (max) - 5000 kV in transmission lime
\rightarrow Front time - 2 to $10 \mu \mathrm{~s}$
\rightarrow Tail time - 20 to $100 \mu \mathrm{~s}$
\rightarrow Rate of rise of voltage $-1 \mathrm{MV} / \mathrm{MS}$.
lassification of lighting strokes on transmission line
(1) Direct strokes
(2) Induced strokes

Driest Lightning strokes

\Rightarrow When the thunder cloud directly discharges onto a transmission line tower (or) line wires it is called direct stroke
\rightarrow Most severe form of the stroke
\rightarrow For bulk of transmission systems, the direct strokes are rare

Induced Lightning stroke:-
When the thunderstorm generates, negative Charge at its ground end, the earth objects (transmission line, towers) develop induced positive charge.

Normally the line are unaffected because they are Insulated by string insulators

However because of high field gradients involved, the positric changes leave from the tower along the insulator surfaces of the line conductors. This process may take a quite long time (700s of sec).

The transmission line \& the ground will act as a huge cap charged with a positive Charge $\&$ hence over vollages occur due to induced Charges. This would result in a stroke \& hence named as" Induced lightning stroke".

Back Hashover
When a direct lightring stroke occurs on a tower, the tower has to carry huge impulse currents.

If the tower footing resistance is considerable, the potential of the tower rises to a large value, steeply Ort the line \& Consequently a flashover may take place \rightarrow along the insulator strings.

Factors Contributing To Good Line Design'-
In order to reduce the hazard that lightning poses - power system, Certain factors that determine the line performance must be understood.
\rightarrow The Objective of good line design is to reduce the number of outages caused by lightning.
\rightarrow First we tar to minimise the effects of those slaokes that do terminate on the system.
\rightarrow Before that the incidence of the strokes to the system to be minimum.
\rightarrow Minimize the effects of those strokes that do terminate on the system.
\rightarrow Lightning problems can be eliminated if all transmission was through tunnels atleast 20 ft under the ground.
\rightarrow Tall lowers are more vulnerable than low goal postlike structures. In order to prevent the lightinie, some adequate Clearances must be provided.
\rightarrow High ground Impedance (or) tower footing resistance are to le avoided.
\rightarrow High surge impedence in ground wires, tower structures are to be avoided.

Protection Against Lightning Transients.
Protection offered by ground wires:-
Ground wire:-
It is a conductor pun parallel to the main Conductor of the transmission line supported on the same tower \& earthed at every equally \& regularly spaced towers. It is rum above the main Conductor of the line.

The ground wire shield's the transmission line Conductor from induced charges from clouds as well as from a lightning discharge.
Function of ground Wires:-
(1) Ground wire system can dramatically reduce the number of outages.
(2) First function of ground wires is to shield the phase Conductors.
(3) Serve the line of those Conductors as the termination of the lightning stroke.
(4) The degree of protection Offered depends upon the disposition of ground wires Wry the Conductors.

Lacey states that a ground Can le regarded as proirding adequate protection to any conductor lying below a quarter circle drawn with its center at the height of He ground wire \& within its radius equal to the height of the ground wire above the ground.

If ' 2 ' or more such wires are provided, the ulnerable area between two adjacent wires can be taken as a semicircle having as its diameter, a line Connecting the '2' ground wires.

Protection afford by ground wires

Mechanism of lightning protection in the: transmission line:-

If a positwiely charged cloud is assumed to be above the line, it induces a negative charge on the portion below it of the transmission line, with the ground wire present.

Both the ground wire \& line Conductor get the induced Charge.

If the ground wire is earthed at regular intervals and as such the induced charge is drained to the earth, only the potential difference between the ground wire \& the cloud

Between the ground wire and the transmission line will be the inverse ratio of their respective Capacitance As the ground wire is nearer to the line wire, the induced charge on it will be much less and hence the potential rise curl le quite small.

The effective protection (or) shielding given by the ground wire depends on the
\rightarrow Height of the ground wire above the ground \rightarrow Protection (θ) shielding angle " θ " usually 20°.
Mus. Lararpay.

ONIT-H

On an electrical transmission line, the voltages,
Of Transients.
current, power and energy flow from the source to a load located at a distance $L^{\prime \prime}$ ", propagating as electromagnetic waves with a finite velocity. It takes a short time for the load to receive the power. This gives the concept of a wave travelling on th line which has distributed line parameters r, l, g, c per unit length.

The current flow is governed mainly by
\rightarrow Load Impedance
\rightarrow Line Charging Current at power frequency
\rightarrow voltage.
If the Lead Impedance doesintmatch with the line Impedance, some of the energy transmitted by the bour is not absorbed by the load and is reflected back te the source.

At every point on the line, there are '2' waves (1) present and the resulting voltage (or) current is equ to the sum of the transmitted and reflected quantities. These waves are called travelling waves.

Hay disturbance on a transmission line or system. Such as Indden opening(or) Closing of line, a short cire or a fault results in the development of ocervoltages oh overcurrent at that point.
This disturbance propagates as a travelling wave to the ends of the line (or) to a termination, such as a culestation.

Transient Response of systems with series and Shunt distributed Lines:-

Consider a typical 2-wire transmission line along with the distriluited electrical elements r, l, g and c.

The propagation of any travelling wave, say a voltage wave Can be analysed boy Considering an elemental length of the line Δx.

$x \rightarrow$ increasing \rightarrow

Let $l \Rightarrow$ Line Inductance H_{m} length
$C \Rightarrow$ Capacitance F / m length
$\Delta x \Rightarrow$ Elementary length of the line at a distanc " x "from the origin.
$l \Delta x \Rightarrow$ Inductance
$c \Delta x \Rightarrow$ Capacitance
Voltage $\Delta v=-l \cdot \Delta x \cdot \frac{\delta I}{d t}$
C current $\Delta I=-c \cdot \Delta x \cdot \frac{\delta v}{\delta t}$

$$
\begin{align*}
(1) \Rightarrow \frac{\Delta r}{\Delta x} & =-l \cdot \frac{\delta I}{\delta t} \\
\lim _{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x} & =\lim _{\Delta x \rightarrow 0}-l \cdot \frac{\delta I}{\delta t} \\
\frac{\delta V}{\delta x} & =-l \cdot \frac{\delta I}{\delta t} \tag{3}
\end{align*}
$$

Also
(2)

$$
\begin{aligned}
& \text { (2) } \Rightarrow \frac{\Delta I}{\Delta x}=-c \cdot \frac{\delta V}{\delta t} \\
& \lim _{\Delta x \rightarrow 0} \frac{\Delta I}{\Delta x}=\lim _{\Delta x \rightarrow 0}-c \cdot \frac{\delta V}{\delta t} \\
& \frac{\delta I}{\delta x}=-c \cdot \frac{\delta V}{\delta t}
\end{aligned}
$$

Diff eq(3) Wrt ' x '

$$
\begin{equation*}
\frac{\delta^{2} v}{\delta x^{2}}=-l \cdot \frac{\delta^{2} I}{\delta x \delta t} \tag{5}
\end{equation*}
$$

Diff eq(4) Wrt ' t'

$$
\frac{\delta^{2} I}{\delta t \delta x}=-c \cdot \frac{\delta^{2} V}{\delta t^{2}}
$$

from (5) \& (6) $\quad(\operatorname{sub}(6)$ in (5) $)$

$$
\begin{aligned}
& \frac{\delta^{2} v}{\delta x^{2}}=-l\left(-c \cdot \frac{\delta^{2} v}{\delta t^{2}}\right) \\
& \frac{\delta^{2} v}{\delta x^{2}}=+h \cdot \frac{\delta^{2} v}{\delta t^{2}} \\
& \frac{\delta^{2} v}{\delta t^{2}}=\frac{1}{l c} \cdot \frac{\delta^{2} v}{\delta x^{2}}
\end{aligned}
$$

Here $V^{2}=1 / l c$

$$
V=\frac{1}{\sqrt{1 c}}
$$

The general solution of the voltage wave eqn in is ivenby

$$
\begin{equation*}
V(x, t)=f_{1}(x+v t)+f_{2}(x-v t) \tag{9}
\end{equation*}
$$

Diffeq (9) wrt "x" (2 times)

$$
\begin{align*}
& \frac{\delta v}{\delta x}=f_{1}^{\prime}(x+v t)+f_{2}^{\prime}(x-v t) \\
& \frac{\delta^{2} v}{\delta x^{2}}=f_{1}^{\prime \prime}(x+v t)+f_{2}^{\prime \prime}(x-v t)
\end{align*}
$$

Differ (9) wit "t"

$$
\begin{aligned}
& \left.\frac{\delta v}{\delta t}=f_{1}^{\prime}(x+v t)(v)+f_{2}^{\prime}(x-v t)(-v)^{2}\right) \\
& \frac{\delta^{2} v}{\delta t^{2}}=f_{1}^{\prime \prime}(x+v t)\left(v^{2}\right)+f_{2}^{\prime \prime}(x-v t)\left(v^{2}\right) \\
& \frac{\delta^{2} v}{\delta t^{2}}=v^{2}\left[\frac{\delta^{2} v}{\delta x^{2}}\right]
\end{aligned}
$$

Which satusfies the eq (7)

Physical Significance of the Solution of equation
Any solution of the form $f(x \pm v t)$ represents a travelling wave, because for any value of " t " a Corresponding value of " x " can be found Such that $f_{1}(x \pm v t)$ has a constant value.
The Voltage distribution has moved intact a distance $V t_{1}$ in the direction of negative $\dot{x}^{\prime \prime}$.
for $f_{2}\left(x_{2}-v^{\prime} t\right)$, represents a travelling wave moving in the direction of positive " x "

We know

$$
\begin{gathered}
\frac{\delta I}{\delta t}=-\frac{1}{\ell} \frac{\delta v}{\delta \bar{x}} \\
\frac{\delta I}{\delta t}=-\frac{1}{\ell}\left[f_{1}^{\prime}(x+v t)+t_{2}^{\prime}(x-v t)\right]
\end{gathered}
$$

Integrating wrt "t" we get

$$
I=-\frac{1}{l}\left[\frac{f_{1}(x+v t)}{v}+f_{2} \frac{(x-v t)}{-v}\right]
$$

$$
\begin{aligned}
& =-\frac{1}{l v}\left[f_{1}(x+v t)-f_{2}(x-v t)\right] \\
& =-\frac{1}{l v}\left[f_{1}(x+v t)-f_{2}(x-v t)\right] \\
& =\frac{1}{l v}\left[f_{2}(x-v t)-f_{1}(x+v t)\right]
\end{aligned}
$$

Here $v=1 / \sqrt{2} C$

$$
\begin{aligned}
\text { Here } v & =1 / \sqrt{l c} \\
I(x, t) & =\frac{1}{l \cdot \frac{1}{\sqrt{l c}}}\left[f_{2}(x-v t)-f_{1}(x+v t)\right] \\
& =\frac{\sqrt{l \cdot \sqrt{c}}}{\sqrt{l \cdot} \cdot \sqrt{l}}\left[f_{2}(x-v t)-f_{1}(x+v t)\right] \\
& =\frac{1}{\sqrt{l / c}}\left[f_{2}(x-v t)-f_{1}(x+v t)\right] \\
I(x, t) & \left.=\frac{1}{20}\left[V_{f}-V_{r}\right)\right]
\end{aligned}
$$

(a) $f_{1}(x+v t)$

(b) $f_{2}(x-v t)$

Propagation of wave.
Where $\sqrt{l_{c}}$ is surge Inpedence (or) Characteristic Impedence 'vo' of a losseless line and is a pure Presistance.
$V_{f} \Rightarrow$ Forward voltage waves
$V_{r} \Rightarrow$ Backward Voltage waves
Forward current wave $I_{f}=\frac{1}{20}$ (Forward Voltage navel $l_{f}^{\prime}=$ Backward current wave If $=\frac{1}{I_{-}}$(Backward voltage ware V_{r})

On loss-free transmission lines, current \& voltage waves have the Same shape being related by the Characteristic impedence of the line and they travel undistorted.

The value of ' z_{0} ' for overhead transmission line
$\Rightarrow 350$-400 ohms
underground cables \Rightarrow 50-60ohms
If the losses are considered in the line, the waves will suffer both attenuation \& distortion While travelling along the line.
Travelling wave Parameters on Transmissilo nines:-
Consider a '2' wire transmission line along with the distributed electrical elements r, l, g, c. voltage drop in the positive ' x ' direction is gwen as

$$
\frac{\delta v}{\delta x}=r+\ell \cdot \frac{\delta I}{\delta t}
$$

Taking 2-T wort 'tim e"t".

$$
\frac{\delta v}{\delta x}=(r+l s) I
$$

$$
\frac{\delta v}{\delta x}=2 I \rightarrow(1
$$

and

$$
\begin{aligned}
\frac{\delta I}{\delta x} & =(g+c s) V \\
& =Y V \rightarrow 2
\end{aligned}
$$

Diff eq (1) wrt " x "

$$
\begin{equation*}
\frac{\delta^{2} v}{\delta x^{2}}=2 \cdot \frac{\delta I}{\delta x} \tag{3}
\end{equation*}
$$

Sub (2) in (3) we get

$$
\frac{\delta^{2} v}{\delta x^{2}}=z \cdot(y v) \Rightarrow P^{2} \cdot v \quad\left(\begin{array}{l}
\text { Where } \left.P^{2}=y z\right) \\
\text { Propagation Constam }
\end{array}\right.
$$

Propagation Constant.
Diff eq (2) wrt "x"

$$
\begin{aligned}
\frac{\delta^{2} I}{\delta x^{2}} & =y \cdot \frac{\delta V}{\delta x} \\
& =y z \cdot I \Rightarrow p^{2} I \quad\left(\begin{array}{l}
y z=p^{2} \\
\text { Propagation }
\end{array}\right.
\end{aligned}
$$

Constants)
Here $p^{2}=y z=(g+c s)(r+l s)$

$$
=r g+r c s+g l s+c l s^{2}
$$

$$
\begin{aligned}
& P^{2}=(g+c s)(r+l s) \\
& P=\sqrt{(g+c s)(r+l s)}=[(g+c s)(r+l s)]^{1 / 2} \\
& P=[c(g / c+s) l(r / l+s)]^{1 / 2} \\
& P=(l c)^{1 / 2}\left[(s+r / l)^{1 / 2}(s+g / c)^{1 / 2}\right] \\
& V^{2}=\frac{1}{l c} \Rightarrow l c=\frac{1}{v^{2}} \Rightarrow \sqrt{l c}=1 / v \\
& P=\frac{1}{V}\left[(s+r / l)^{1 / 2}(s+g / c)^{1 / 2}\right]
\end{aligned}
$$

Here $\alpha-\beta=\sigma_{c}, \quad \alpha+\beta=r / e$
$\operatorname{sq}(4)+5) \Rightarrow$

$$
2 \alpha=\frac{g}{c}+r / l \Rightarrow \alpha=\frac{1}{2}[g / c+r / l]
$$

$q q(4)$-(5)

$$
\begin{aligned}
& P^{2}=(g+c s)(r+l s) \\
& P=\sqrt{(g+c s)(r+l s)}=[(g+c s)(r+l s)]^{1 / 2} \\
& P=[c(g / c+s) l(r / l+s)]^{1 / 2} \\
& P=(l c)^{1 / 2}\left[(s+r / l)^{1 / 2}(s+g / c)^{1 / 2}\right] \\
& V^{2}=\frac{1}{l c} \Rightarrow l c=\frac{1}{V^{2}} \Rightarrow \sqrt{l c}=1 / v \\
& P=\frac{1}{V}\left[(s+r / l)^{1 / 2}(s+g / c)^{1 / 2}\right]
\end{aligned}
$$

Here $\quad \alpha-\beta=q / c, \quad \alpha+\beta=r / e$
$\operatorname{sq}(4)+5 \Rightarrow$

$$
2 \alpha=g / c+r / l \Rightarrow \alpha=\frac{1}{2}[g / c+r / l]
$$

$\sum q(4)-(5)$
(6)

$$
\begin{aligned}
& \alpha-\beta-\alpha-\beta=g / c-\gamma / l \\
& -2 \beta=g / c-\gamma / l \Rightarrow 2 \beta=\frac{\gamma}{l}-g / c
\end{aligned}
$$

