PRACTICAL RECORD

CS2357

OBJECT ORIENTED ANALYSIS AND DESIGN LAB

NAME : ______________________

REGISTER NO : ______________________

SEMESTER : ______________________

YEAR : ______________________
EX NO: 1 STUDY OF UML

DATE:

UML NOTATION

• Unified Modeling Language.
• Set of notations and conventions used to describe and model an application.
• Universal language for modeling systems.
• Standard notation for OO modeling systems.
• Does not specify methodology to develop an application.

UML DIAGRAMS

• Class Diagram
• Use Case Diagram
• Behavioral Diagram
• Interaction Diagram
 Sequence Diagram
 Collaboration Diagram
• State Chart Diagram
• Activity Diagram
• Implementation Diagram
 Component Diagram
 Deployment Diagram

CLASS DIAGRAM

• Shows the static structure of the model.
• Collection of static modeling elements such as classes and their relationships connected as a graph.
• Provides visual representation of objects, relationships and their structures.

Class:-
• A class is a set of objects that share a common structure and common behavior.
• It is represented as:

 | <Class |
 | <Attribute> |
 | <Operations> |

Interface:-
• Specifies the externally-visible operations of a class and/or component.

Association:-
• Model properties of associations.
• The properties are stored in a class and linked to the association relationship.

• Example,

```
Bank Account -> Person
```

Generalization:
- A generalize relationship is a relationship between a more general class or use case and a more specific class or use case.

• Example,

```
Vehicle
   Bus
   Truck
   Car
```

USE CASE DIAGRAM
- Set of use cases enclosed by system boundary, communication association between actors and use cases, and generalization among use cases.

Actors:
- External factors that interacts with the system from the user's perspective.

```
actor
```

Use Cases:
- Set of scenarios that describe how actor uses the system.
- Represented as,

```
use case
```

Relationship:
- Communication – communications with the use case normally.
- Uses – Shown by generalization arrow from the use cases.
- Extends – Used when one case does more than another that is similar to it.

BEHAVIOR DIAGRAM

INTERACTION DIAGRAM
- Diagrams that describes how group of objects are collaborated.

SEQUENCE DIAGRAM
- Describes the behavior of the system through interaction between the system and the environment in time sequence.
• Two dimensions:
 Vertical dimension – represents time.
 Horizontal dimension – represents objects.
• Life line – Object's existence during the interaction

Relationship:
• Communication – communications with the use case normally.
• Uses – Shown by generalization arrow from the use cases.
• Extends – Used when one case does more than another that is similar to it.

![Collaboration Diagram](image)

COLLABORATION DIAGRAM

An interaction diagram that shows the order of messages that implement an operation or a transaction.

- Collaboration diagrams show objects, their links, and their messages

![State Chart Diagram](image)

STATECHART DIAGRAM

- Models the dynamic behavior of individual classes or any other kind of object.
- Shows the sequences of states, events, and actions.

Object:
- An object has state, behavior, and identity.
- Objects interact through their links to other objects.

Link:
- A link is an instance of an association, analogous to an object.

Message:
- A message is the communication carried between two objects that trigger an event.

State:
- Represents a condition or situation during the life of an object during which it satisfies some condition or waits for some event.

Start State:
- Shows the beginning of workflow.

End State:
- Represents the final or terminal state.
ACTIVITY DIAGRAM

- Used for modeling the sequence of activities in a process.
- Special case of a state machine in which most of the states are activities and most of the transitions are implicitly triggered by completion of the actions in the source activities.

Activity:--
- Represents the performance of task or duty in a workflow.

Swim lanes:--
- Represents organizational units or roles within a business model.

IMPLEMENTATION DIAGRAM

- Shows the implementation phase of system development.
- Two types of implementation diagrams:
 Component diagram
 Deployment diagram

COMPONENT DIAGRAM

- Models the physical components in the design.
- A graph of the design’s components connected by dependency relationships.
- Includes concept of packages.
- Package is used to show how classes are grouped together.

DEPLOYMENT DIAGRAM

- Shows the configuration of runtime processing elements and software components.
- It is a graph of nodes connected by communication association.
- Nodes are the components that are connected to other components through dependencies.
- Used in conjunction with component diagrams to show the distribution of physical modules

RESULT:

Thus the Unified Modeling Language was studied successfully.
EX NO: 2

PASSPORT AUTOMATION SYSTEM

DATE:

AIM

To develop the Passport Automation System using rational rose tools.

PROBLEM ANALYSIS AND PROJECT PLAN

To simplify the process of applying passport, software has been created by designing through rational rose tool. Initially the applicant login the passport automation system and submits his details. These details are stored in the database and verification process done by the passport administrator, regional administrator and police the passport is issued to the applicant.

PROBLEM STATEMENT

• Passport Automation System (PAS) is used in the effective dispatch of passport to all of the applicants. This system adopts a comprehensive approach to minimize the manual work and schedule resources, time in a cogent manner.
• The core of the system is to get the online registration form (with details such as name, address etc.,) filled by the applicant whose testament is verified for its genuineness by the Passport Automation System with respect to the already existing information in the database.
• This forms the first and foremost step in the processing of passport application. After the first round of verification done by the system, the information is in turn forwarded to the regional administrator's (Ministry of External Affairs) office.
• The application is then processed manually based on the report given by the system, and any forfeiting identified can make the applicant liable to penalty as per the law.
• The system forwards the necessary details to the police for its separate verification whose report is then presented to the administrator. After all the necessary criteria have been met, the original information is added to the database and the passport is sent to the applicant.

INTRODUCTION

Passport Automation System is an interface between the Applicant and the Authority responsible for the Issue of Passport. It aims at improving the efficiency in the Issue of Passport and reduces the complexities involved in it to the maximum possible extent.

PURPOSE

If the entire process of 'Issue of Passport' is done in a manual manner then it would take several months for the passport to reach the applicant. Considering the fact that the number of applicants for passport is increasing every year, an Automated System becomes essential to meet the demand. So this system uses several programming and database techniques to elucidate the work involved in this process. As this is a matter of National Security, the system has been carefully verified and validated in order to satisfy it.

SCOPE

• The System provides an online interface to the user where they can fill in their personal details
• The authority concerned with the issue of passport can use this system to reduce his workload and process the application in a speedy manner.
• Provide a communication platform between the applicant and the administrator.
• Transfer of data between the Passport Issuing Authority and the Local Police for verification of applicant's information.

USER CHARACTERISTICS

• Applicant - They are the people who desire to obtain the passport and submit the information to the database.
• Administrator - He has the certain privileges to add the passport status and to approve the issue of passport. He may contain a group of persons under him to verify the documents and give suggestion whether or not to approve the dispatch of passport.
• Police - He is the person who upon receiving intimation from the PAS, perform a personal verification of the applicant and see if he has any criminal case against him before or at present. He has been vetoed with the power to decline an application by suggesting it to the Administrator if he finds any discrepancy with the applicant. He communicates via this PAS.

CONSTRAINTS

• The applicants require a computer to submit their information.
• Although the security is given high importance, there is always a chance of intrusion in the web world which requires constant monitoring.
• The user has to be careful while submitting the information. Much care is required.

ASSUMPTIONS AND DEPENDENCIES

• The Applicants and Administrator must have basic knowledge of computers and English Language.
• The applicants may be required to scan the documents and send.

USE CASE DIAGRAM

Use case is shown as an ellipse containing the name of use case. An actor is shown as a stick figure with the name below it. Use case diagram is a graph of actors.
CLASSDIAGRAM

A class is drawn as rectangle box with three compartments or components separated by horizontal lines. The top compartment holds the class name and middle compartment holds the attribute and bottom compartment holds list of operations.

SEQUENCE DIAGRAM

A sequence diagram shows an interaction arranged in time sequence. It shows object participating in interaction by their lifeline by the message they exchange arranged in time sequence. Vertical dimension represent time and horizontal dimension represent object.
A collaboration diagram is similar to sequence diagram but the message in number format. In a collaboration diagram sequence diagram is indicated by the numbering the message. A sophisticated modeling tool can easily convert a collaboration diagram into a sequence diagram and the vice versa. A collaboration diagram resembles a flowchart that portrays the roles.

STATE CHART DIAGRAM
The state chart diagram contains the states in the rectangle boxes and starts in indicated by the dot and finish is indicated by dot encircled. The purpose of state chart diagram is to understand the algorithm in the performing method.

ACTIVITY DIAGRAM

An activity diagram is a variation or special case of a state machine in which the states or activity representing the performance of operation and transitions are triggered by the completion of operation. The purpose is to provide view of close and what is going on inside a use case or among several classes. An activity is shown as rounded box containing the name of operation.

COMPONENT DIAGRAM

The component diagram is represented by figure dependency and it is a graph of design of figure dependency. The component diagram's main purpose is to show the structural relationships between the components of a system. It is represented by boxed figure. Dependencies are represented by communication association.

DEPLOYMENT DIAGRAM

It is a graph of nodes connected by communication association. It is represented by a three dimensional box. A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3-dimentional box. Dependencies are represented by communication association."
The basic element of a deployment diagram is a node of two types:

DEVICE NODE - A physical computing resource with processing and memory service to execute software, such as a typical computer or a mobile phone.

EXECUTION ENVIRONMENT NODE - This is a software computing resource that runs within an outer node and which itself provides a service to host an execute other executable software element.

OUTPUT:

APPLICANT.H:

```cpp
#ifndef APPLICANT_H_HEADER_INCLUDED_AEF5C8EF
#define APPLICANT_H_HEADER_INCLUDED_AEF5C8EF

class Applicant
{
    public:
        login();
        submitdetails();
        checkdetails();
    private:
        Name;
        DateofBirth;
        PermanentAddress;
        TemporaryAddress;
        EmailId;
        phoneNo;
        applicationNo;
        UserName;
        Password;
};
#endif
```
#include "Applicant.h"
Applicant::login()
{
}
Applicant::submitdetails()
{
}
Applicant::checkdetails()
{
}

DATABASE.H:

#ifndef DATABASE_H_HEADER_INCLUDED_AEF5853C
#define DATABASE_H_HEADER_INCLUDED_AEF5853C
class database
{
 public:
 store();
 private:
 Name;
};
#endif

DATABASE.CPP:

#include "database.h"
database::store()
{
}

PASSPORTADMINISTRATOR.H:

#ifndef PASSPORTADMINISTRATOR_H_HEADER_INCLUDED_AEF591BD
#define PASSPORTADMINISTRATOR_H_HEADER_INCLUDED_AEF591BD
class PassportAdministrator
{
 public:
 Getdetails();
 Verify();
 Store();
 IssuePassport();
 private:
 Name;
};
#endif

PASSPORTADMINISTRATOR.H:

#include "PassportAdministrator.h"
PassportAdministrator::Getdetails()
{
}
PassportAdministrator::Verify()
{
}
PassportAdministrator::Store()
{
}
PassportAdministrator::IssuePassport()
{
}

POLICE.H:

#ifndef POLICE_H_HEADER_INCLUDED_AEF5CAA0
#define POLICE_H_HEADER_INCLUDED_AEF5CAA0
class Police
{
 public:
 GetDetail();
 Verify();
 Store();
 private:
 Name;
};
#endif

POLICE.CPP:
#include "Police.h"
Police::GetDetail()
{
}
Police::Verify()
{
}
Police::Store()
{
}

REGIONANALACTION.H:

#ifndef REGIONALACTION_H_HEADER_INCLUDED_AEF5B590
#define REGIONALACTION_H_HEADER_INCLUDED_AEF5B590
class RegionalAction
{
 public:
 GetDetail();
 Verify();
 Store();
 private:
 Name;
};
#endif
};
#endif

REGIONAL.CPP:

#include "RegionalAction.h"
RegionalAction::GetDetail()
{
}
RegionalAction::Verify()
{
}
RegionalAction::Store()
{
}

RESULT:
Thus the project to develop passport automation system was developed using Rational Rose Software was done successfully
AIM
To develop a project of Book bank management system using Rational Rose Software

PROBLEM ANALYSIS AND PROJECT DESIGN
The book bank management system is an software in which a member can register themselves and then he can borrow books from the book bank. It mainly concentrates on providing books for engineering students.

PROBLEM STATEMENT
The process of members registering and purchasing books from the book bank are described sequentially through following steps:
• First the member registers himself if he was new to the book bank.
• Old members will directly select old member button.
• They select their corresponding year.
• After selecting the year they fill the necessary details and select the book and he will be directed towards administrator
• The administrator will verify the status and issue the book.

INTRODUCTION
This system would be used by members who are students of any college to check the availability of the books and borrow the books, and then the databases are updated. The purpose of this document is to analyze and elaborate on the high-level needs and features of the book bank management system. It also tells the usability, reliability defined in use case specification.

SCOPE
The scope of this book bank management system is to act as a tool for book bank administrator for quick reference, availability of the books.

FUNCTIONALITY
Many members will be waiting to take the book from the book bank at a single day. To serve all the members.

UML DIAGRAMS:

USE CASE DIAGRAM
A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal. It is represented using ellipse. Actor is any external entity that makes use of the system being modeled. It is represented using stick figure.
CLASS DIAGRAM

A class diagram in the unified modelling language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. It is represented using a rectangle with three compartments. Top compartment have the class name, middle compartments the attributes and the bottom compartment with operations.

SEQUENCE DIAGRAM

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. There are two dimensions.
1. Vertical dimension-represent time.
2. Horizontal dimension-represent different objects.
COLLABRATION DIAGRAM

A collaboration diagram, also called a communication diagram or interaction diagram. A sophisticated modeling tool can easily convert a collaboration diagram into a sequence diagram and the vice versa. A collaboration diagram resembles a flowchart that portrays the roles, functionality and behavior of individual objects as well as the overall operation of the system in real time.

STATE CHART DIAGRAM

The purpose of state chart diagram is to understand the algorithm involved in performing a method. It is also called as state diagram. A state is represented as a round box, which may contain one or more compartments. An initial state is represented as small dot. An final state is represented as circle surrounding a small dot.

ACTIVITY DIAGRAM

Activity diagrams are graphical representations of workflows of stepwise activities and actions with support for choice, iteration and concurrency. In the Unified Modeling Language, activity diagrams can be used to describe the business and operational step-by-step workflows of components in a system. An activity diagram shows the overall flow of control. An activity is shown as an rounded box containing the name of the operation.
COMPONENT DIAGRAM

The component diagram's main purpose is to show the structural relationships between the components of a system. It is represented by boxed figure. Dependencies are represented by communication association.

DEPLOYMENT DIAGRAM

A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3- dimensional box. Dependencies are represented by communication association.
BOOKBANK.H:

```c++
#ifndef BOOKBANK_H_HEADER_INCLUDED_AEEC8F5F
#define BOOKBANK_H_HEADER_INCLUDED_AEEC8F5F

class Bookbank
{
    public:
        checking();
        issueing();
        share();
    private:
        name;
        address;
};

#endif
```

BOOKBANK.CPP:

```c++
#include "Bookbank.h"

Bookbank::checking()
{
}
Bookbank::issueing()
{
}
Bookbank::share()
{
}
```

STUDENT.H:

```c++
#ifndef STUDENT_H_HEADER_INCLUDED_AEECF016
#define STUDENT_H_HEADER_INCLUDED_AEECF016

class Student
{
    public:
        register();
        submitbookinformation();
        collectbook();
        register();
        register();
    private:
        name;
        collegename;
        address;
        year;
};
#endif
```
STUDENT.CPP:

```cpp
#include "Student.h"
Student::register()
{
}
Student::submitbookinformation()
{
}
Student::collectbook()
{
}
Student::register()
{
}
```

RESULT
Thus the project to develop book bank management system using Rational Rose Software was done successfully.
AIM
To develop a project Exam Registration using Rational Rose Software.

PROBLEM ANALYSIS AND PROJECT PLANNING
The Exam Registration is an application in which applicants can register themselves for the exam. The details of the students who have registered for the examination will be stored in a database and will be maintained. The registered details can then be verified for any fraudulent or duplication and can be removed if found so. The database which is verified can be used to issue hall tickets and other necessary materials to the eligible students.

PROBLEM STATEMENT
The process of students accessing the registration application and applying for the examination by filling out the form with proper details and then the authorities verify those details given for truth and correctness are sequenced through steps
• The students access exam registration application.
• They fill out the form with correct and eligible details.
• They complete the payment process.
• The authorities verify or check the details.
• After all verification the exam registration database is finalized.

INTRODUCTION
Exam Registration application is an interface between the Student and the Authority responsible for the Exams. It aims at improving the efficiency in the registration of exams and reduces the complexities involved in it to the maximum possible extent.

SCOPE
The scope of this Exam Registration process is to provide an easy interface to the applicants where they can fill their details and the authorities maintain those details in an easy and effective way.

FUNCTIONALITY
The main functionality of registration system is to make the registration and database for it to be maintained in an efficient manner.

UML DIAGRAMS:

USE CASE DIAGRAM
A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal. It is represented using ellipse. Actor is any external entity that makes use of the system being modeled. It is represented using stick figure.
CLASS DIAGRAM

A class diagram in the unified modeling language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. It is represented using a rectangle with three compartments. Top compartment have the class name, middle compartment the attributes and the bottom compartment with operations.

SEQUENCE DIAGRAM

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. There are two dimensions.
1. Vertical dimension-represent time.
2. Horizontal dimension-represent different objects.
COLLABRATION DIAGRAM

A collaboration diagram, also called a communication diagram or interaction diagram, is a sophisticated modeling tool that can easily convert a collaboration diagram into a sequence diagram and vice versa. A collaboration diagram resembles a flowchart that portrays the roles, functionality, and behavior of individual objects as well as the overall operation of the system in real time.

STATE CHART DIAGRAM

The purpose of state chart diagram is to understand the algorithm involved in performing a method. It is also called as state diagram. A state is represented as a round box, which may contain one or more compartments. An initial state is represented as small dot. A final state is represented as circle surrounding a small dot.
ACTIVITY DIAGRAM

Activity diagrams are graphical representations of workflows of stepwise activities and actions with support for choice, iteration and concurrency. In the Unified Modeling Language, activity diagrams can be used to describe the business. An activity diagram shows the overall flow of control.

COMPONENT DIAGRAM

The component diagram's main purpose is to show the structural relationships between the components of a system. It is represented by boxed figure. Dependencies are represented by communication association.
DEPLOYMENT DIAGRAM

A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3- dimensional box. Dependencies are represented by communication association."
#ifndef REG_WEBSITE_H_HEADER_INCLUDED_AEE3B2B5
#define REG_WEBSITE_H_HEADER_INCLUDED_AEE3B2B5

class Reg website
{
 public:
 verification();
 processing();
 registrating();
 private:
 Qualification;
 login details;
 fees details;
 exam details;
};
#endif

REGWEBSITE.CPP:

#include "Reg website.h"
Reg website::verification()
{
}
Reg website::processing()
{
}
Reg website::registrating()
{
}

STUDENT1.H:

#ifndef STUDENT1_H_HEADER_INCLUDED_AEE3E628
#define STUDENT1_H_HEADER_INCLUDED_AEE3E628

class Student
{
 public:
 form filling();
 registration();

 private:
 name;
 address;
 DOB;
 subject;
 collage;
};
#endif
STUDENT1.CPP:

#include "Student1.h"
Student::form filling()
{
}
Student::registration()
{
}

UNIVERSITY.H:

#ifndef UNIVERSITY_DATABASE_H_HEADER_INCLUDED_AEE3877C
#define UNIVERSITY_DATABASE_H_HEADER_INCLUDED_AEE3877C
class University Database
{
 public:
 storing registration();
 private:
 exam details;
 reg details;
};

UNIVERSITY.CPP:

#include "University Database.h"
University Database::storing registration()
{
}

RESULT
Thus the project to develop Exam Registration system using Rational Rose Software was done successfully.
EX NO: 5

STOCK MAINTENANCE SYSTEM

AIM
To develop a project stock maintenance system using Rational Rose Software

PROBLEM ANALYSIS AND PROJECT PLANNING

The Stock Maintenance System, initial requirement to develop the project about the mechanism of the Stock Maintenance System is caught from the customer. The requirement are analyzed and refined which enables the end users to efficiently use Stock Maintenance System. The complete project is developed after the whole project analysis explaining about the scope and the project statement is prepared.

PROBLEM STATEMENT

The process of stock maintenance system is that the customer login to the particular site to place the order for the customer product. The stock maintenance system are described sequentially through steps
• The customer login to the particular site.
• They fill the customer details.
• They place the orders for their product.
• The vendor login and views the customer details and orders.

INTRODUCTION

This software specification documents full set of features and function for online stock maintenance system that is performed in company website. In this we give specification about the customer orders. It tells the usability, reliability defined in use case specification.

SCOPE

The scope of this stock maintenance system is to maintain the stock.

FUNCTIONALITY

The main functionality of the stock maintenance system is to maintain the stock.

UML DIAGRAMS:

USE CASE DIAGRAM

A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal. It is represented using ellipse. Actor is any external entity that makes use of the system being modeled. It is represented using stick figure.
A class diagram in the unified modeling language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. It is represented using a rectangle with three compartments. Top compartment have the class name, middle compartment the attributes and the bottom compartment with operations.
SEQUENCE DIAGRAM

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart.

COLLABRATION DIAGRAM

A collaboration diagram, also called a communication diagram or interaction diagram, is a sophisticated modeling tool that can easily convert a collaboration diagram into a sequence diagram and the vice versa. A collaboration diagram resembles a flowchart that portrays the roles, functionality, and behavior of individual objects as well as the overall operation of the system in real time.
STATE CHART DIAGRAM

The purpose of state chart diagram is to understand the algorithm involved in performing a method. It is also called as state diagram. A state is represented as a round box, which may contain one or more compartments. An initial state is represented as small dot. An final state is represented as circle surrounding a small dot.

ACTIVITY DIAGRAM

Activity diagrams are graphical representations of workflows of stepwise activities and actions with support for choice, iteration and concurrency. In the Unified Modeling Language, activity diagrams can be used to describe the business and operational step-by-step workflows of components in a system. An activity diagram shows the overall flow of control. An activity is shown as an rounded box containing the name of the operation.

COMPONENT DIAGRAM

The component diagram's main purpose is to show the structural relationships between the components of a systems. It is represented by boxed figure. Dependencies are represented by communication association.
A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3-dimensional box. Dependencies are represented by communication association"
AGENT.H:

#ifndef AGENT_H_HEADER_INCLUDED_AEC7F636
#define AGENT_H_HEADER_INCLUDED_AEC7F636

class agent
{
 public:
 request();
 purchase();
 bill();
 }
#endif

AGENT.CPP:
#include "agent.h"

agent::request()
{
}

agent::purchase()
{
}

agent::bill()
{
}

CASH.H:

#ifndef CASH_H_HEADER_INCLUDED_AEC7CC6B
#define CASH_H_HEADER_INCLUDED_AEC7CC6B

class cash
{
 public:
 amt();
 private:
 long amount;
};
#endif

CASH.CPP:
#include "cash.h"

cash::amt()
{
}

ITEM.H:

#ifndef ITEM_H_HEADER_INCLUDED_AEC793F1
#define ITEM_H_HEADER_INCLUDED_AEC793F1

class item
{
 public:
 expiry date();
 }
ITEM.CPP:

```cpp
#include "item.h"
item::expiry date()
{
}
item::Quantity()
{
}
item::price()
{
}
ORDER.H:

#ifndef ORDER_H_HEADER_INCLUDED_AEC7FF8D
#define ORDER_H_HEADER_INCLUDED_AEC7FF8D
class order
{
 public:
 purchase();
 discount(void 0);
 product count();
 private:
 string Item;
 Long price;
};
#endif
ORDER.CPP:

#include "order.h"
order::purchase()
{
}
order::discount(void 0)
{
}
order::product count()
{
}
RESULT
Thus the project to develop Stock Maintenance system using Rational Rose Software was done successfully.
AIM
To design an object oriented model for course reservation system using Rational Rose Software.

PROBLEM ANALYSIS AND PROJECT PLANNING

The requirement form the customer is got and the requirements about the course registration are defined. The requirements are analyzed and defined so that it enables the student to efficiency select a course through registration system. The project scope is identified and the problem statement is prepared.

PROBLEM STATEMENT

• Whenever the student comes to join the course he/she should be provided with the list of course available in the college.

• The system should maintain a list of professor who is teaching the course. At the end of the course the student must be provided with the certificate for the completion of the course.

SCOPE

• In this specification, we define about the system requirements that are about from the functionality of the system.

• It tells the users about the reliability defined in usecase specification

FUNCTIONALITY

Many members of the process line to check for its occurrences and transaction, we are have to carry over at sometimes

UML DIAGRAMS:

USE CASE DIAGRAM

A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal. It is represented using ellipse. Actor is any external entity that makes use of the system being modelled. It is represented using stick figure.

[Diagram of use case diagram]
CLASS DIAGRAM

A class diagram in the unified modeling language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. It is represented using a rectangle with three compartments. Top compartment have the class name, middle compartment the attributes and the bottom compartment with operations.

SEQUENCE DIAGRAM

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence chart.
COLLABORATION DIAGRAM

A collaboration diagram, also called a communication diagram or interaction diagram. A sophisticated modeling tool can easily convert a collaboration diagram into a sequence diagram and the vice versa. A collaboration diagram resembles a flowchart that portrays the roles, functionality and behavior of individual objects as well as the overall operation of the system in real time.
STATE CHART DIAGRAM

The purpose of state chart diagram is to understand the algorithm involved in performing a method. It is also called as state diagram. A state is represented as a round box, which may contain one or more compartments. An initial state is represented as small dot. A final state is represented as circle surrounding a small dot.
ACTIVITY DIAGRAM

Activity diagrams are graphical representations of workflows of stepwise activities and actions with support for choice, iteration and concurrency. Activity diagrams can be used to describe the business and operational step-by-step workflows of components in a system.
COMPONENT DIAGRAM

The component diagram's main purpose is to show the structural relationships between the components of a system. It is represented by boxed figure. Dependencies are represented by communication association.

DEPLOYMENT DIAGRAM

A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3-dimensional box. Dependencies are represented by communication association."
OUTPUT:

IT.H:

#ifndef CSE_IT_H_HEADER_INCLUDED_AEC7DB13
#define CSE_IT_H_HEADER_INCLUDED_AEC7DB13  

class CSE/IT : public Course  
{
    public:
#include "Course.h"
    terminate();
    private:
        os alb;
        internal lab;
        casetool lab;
        network lab;
};
#endif

IT.CPP:

#include “CSE/IT.h”
CSE/IT :: Terminate()
{
}

COLLAGE.H:

#ifndef COLLAGE_H_HEADER_INCLUDED_AEC7CAE0
#define COLLAGE_H_HEADER_INCLUDED_AEC7CAE0  

class Collage  
{
    public:
        admision();
    private:
        college no;
        college name;
        course;
};
#endif

COLLAGE.CPP:

#include "College.h"
Collage::admision()
{
}

ECE.H:

#ifndef ECE_H_HEADER_INCLUDED_AEC7B20F
#define ECE_H_HEADER_INCLUDED_AEC7B20F  


#include "Course.h"
class ECE : public Course
{
    digital lab;
    microprocessor lab;
    electronic lab;
};
#endif
ECE.CPP:
#include "ECE.h"

EEE.H:
#ifndef EEE_H_HEADER_INCLUDED_AEC7C8FC
#define EEE_H_HEADER_INCLUDED_AEC7C8FC
#include "Course.h"
class EEE : public Course
{
    Electronic lab;
    Electricacl lab;
    Control system;
};
#endif
EEE.CPP:
#include “EEE.h”

MBA.H:
#ifndef MBA_H_HEADER_INCLUDED_AEC7F486
#define MBA_H_HEADER_INCLUDED_AEC7F486
#include "Course.h"
class MBA : public Course
{
    communicatation;
    marketing;
    management;
};
#endif
MBA.CPP:
#include "MBA.h"

MECHANICAL.H:
#ifndef MECHANICAL_H_HEADER_INCLUDED_AEC7DFFF
#define MECHANICAL_H_HEADER_INCLUDED_AEC7DFFF
#include "Course.h"
class Mechanical : public Course
{
public:
    production();
private:
    lathe;
    workshop;
};
#endif

MECHANICAL.CPP:

#include "Mechanical.h"
Mechanical::production()
{
}

STUDENT.H:

#ifndef STUDENT_H_HEADER_INCLUDED_AEC7F76B
#define STUDENT_H_HEADER_INCLUDED_AEC7F76B
class Student
{
    public:
        study();
    private:
        name;
        roll no;
        mark;
};
#endif

STUDENT.CPP:

#include "Student.h"
Student::study()
{
}

RESULT
Thus the project to develop online course reservation system was developed using Rational Rose Software was done successfully.
EXNO: 7   E-TICKETING

DATE:

AIM
To develop the E-Ticketing System using Rational Rose Software.

PROBLEM ANALYSIS AND PROJECT PLANNING

In the E-Ticketing system the main process is a applicant have to login the database then the database verifies that particular username and password then the user must fill the details about their personal details then selecting the flight and the database books the ticket then send it to the applicant then searching the flight or else cancelling the process.

PROBLEM STATEMENT

The E-Ticketing system is the initial requirement to develop the project about the mechanism of the E-ticketing system what the process do at all.
• The requirement are analyzed and refined which enables the end users to efficiently use the E-ticketing system.

• The complete project is developed after the whole project analysis explaining about scope and project statement is prepared.

• The main scope for this project is the applicant should reserved for the flight ticket.

• First the applicant wants to login to the database after that the person wants to fill their details.

• Then the database will seach for ticket or else the person will cancelled the ticket if he/she no need.

FUNCTIONALITY

The database should be act as an main role of the e-ticketing system it can be booking the ticket in easy way.

UML DIAGRAMS:

USE CASE DIAGRAM

A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal. It is represented using ellipse. Actor is any external entity that makes use of the system being modeled. It is represented using stick figure.
CLASS DIAGRAM

A class diagram in the unified modeling language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. It is represented using a rectangle with three compartments. Top compartment have the class name, middle compartment the attributes and the bottom compartment with operations.
**SEQUENCE DIAGRAM**

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. There are two dimensions.
1. Vertical dimension - represent time.
2. Horizontal dimension - represent different objects.

**COLLABRATION DIAGRAM**

A collaboration diagram, also called a communication diagram or interaction diagram. A sophisticated modeling tool can easily convert a collaboration diagram into a sequence diagram and the vice versa. A collaboration diagram resembles a flowchart that portrays the roles, functionality and behavior of individual objects as well as the overall operation of the system in real time.
**STATE CHART DIAGRAM**

The purpose of state chart diagram is to understand the algorithm involved in performing a method. It is also called as state diagram. A state is represented as a round box, which may contain one or more compartments. An initial state is represented as small dot. A final state is represented as circle surrounding a small dot.

**ACTIVITY DIAGRAM**

Activity diagrams are graphical representations of workflows of stepwise activities and actions with support for choice, iteration and concurrency. In the Unified Modeling Language, activity diagrams can be used to describe the business and operational step-by-step workflows of components in a system. An activity diagram shows the overall flow of control. An activity is shown as an rounded box containing the name of the operation.
COMPONENT DIAGRAM

The component diagram’s main purpose is to show the structural relationships between the components of a system. It is represented by boxed figure. Dependencies are represented by communication association.

DEPLOYMENT DIAGRAM

A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3- dimensional box. Dependencies are represented by communication association.
OUTPUT:

APPLICANT.H:

```c
#ifndef APPLICANT_H_HEADER_INCLUDED_AEBEF109
#define APPLICANT_H_HEADER_INCLUDED_AEBEF109

class Applicant
{
 public:
 filling details();
 selecting flight();
 book ticket();
 cancel ticket();
 private:
 passport code;
 first name;
 last name;
 address;
 nationality;
 phone;
 sex;
 passport number;
 resident permit;
 book date;
 destination;
 departure date;
 flight name;
 flight no;
 amount;
};
#endif
```

APPLICANT.CPP:

```c
#include "Applicant.h"
Applicant::filling details()
{
}
Applicant::selecting flight()
{
}
Applicant::book ticket()
{
}
Applicant::cancel ticket()
{
}
```

ETICKETING DATABASE.H:

```c
#ifndef ETICKETING_DATABASE_H_HEADER_INCLUDED_AEBE91A7
#define ETICKETING_DATABASE_H_HEADER_INCLUDED_AEBE91A7

class Eticketing database
```
{  
  public:  
    ticket booking();  
    hotel booking();  
    verifing ticket();  
  private:  
    airlines;  
    hotel res;  
};  
#endif

ETICKETING DATABASE.CPP:

#include "Eticketing database.h"
Eticketing database::ticket booking()
{
}
Eticketing database::hotel booking()
{
}
Eticketing database::verifing ticket()
{
}

RESULT

Thus the project to develop E-Ticketing system using Rational Rose Software was done successfully.
AIM

To develop a project employee management system using the Rational Rose Software.

PROJECT ANALYSIS AND PROJECT PLANNING

The employee management system is used to manage our personnel things such as maintaining databases in offices etc. this project is easy for the CEO to handle the details. This is personally used for CEO.

PROBLEM STATEMENT

The CEO must enter the name and password to login the form and select the particular employee to view the details about that employee and maintaining the employee details personally. This process of employee management system are described sequentially through following steps,

- The CEO login to the employee management system.
- He/she search for the list of employees.
- Then select the particular employee.
- Then view the details of that employee.
- After displaying the employee details then logout.

SCOPE

It specifies the requirements to develop a processing software part that complete the set of requirements. In this specification, we define about the system requirements that are apart from the functionality of system

FUNCTIONALITY

Many members of the process live to check for the occurrence and transaction, we all have to carry over at sometime

UML DIAGRAMS:

USE CASE DIAGRAM

The use cases are a set of scenarios to guide together by a common user goal. A scenario is the sequence of steps describing an interaction between a user and their system.
CLASS DIAGRAM

The Class diagram the types of object in the system a various kinds of static relation ships that exists among them.

STATE CHART DIAGRAM:

It is a technique to describe the behavior of the system. It determines all the possible states as that of particular object gets into the object oriented technique. State diagrams are drawn for a single class so status to the lifetime behavior of a single objector.
ACTIVITY DIAGRAM

The Activity diagram describes the sequencing of activity will support for both conditional and parallel. An activity is a variant of state diagram.

SEQUENCE DIAGRAM

It is a kind of interaction diagram in which an object is shown as a box at the top of the dash vertical line. This vertical line is called object life time. The life time represent the object’s life during interaction object deletion is shown with a large x.
COLLABORATION DIAGRAM

In a collaboration diagram object are shown as icons as on. A collaboration diagram arrow indicates the message send within the given use case. The sequence is indicated by numbering the messages.
Components are a slightly fuzzy concept in the UML, because both classes and components can be used to model the same thing. A component represents a modular part of a system that encapsulates its contents and whose manifestation is replaceable within its environment. A component defines its behavior in terms of provided and required interfaces. As such, a component serves as a type, whose conformance is defined by these provided and required interfaces.

A deployment diagram shows the assignment of concrete software artifacts (such as executable files) to computational nodes (something with processing services). It shows the deployment of software elements to the physical architecture and the communication (usually on a network) between physical elements.
OUTPUT:

CEO.H:

```c++
#ifndef CEO_H_HEADER_INCLUDED_AEA287B1
#define CEO_H_HEADER_INCLUDED_AEA287B1

class CEO
{
 public:
 view();
 update();
 login();
 private:
 name;
 Empno;
 DOB;
};
#endif
```

CEO.CPP:

```c++
#include "CEO.h"

CEO::view()
{
}
CEO::update()
{
}
CEO::login()
{
}
```

DATABASE.H:

```c++
#ifndef DATABASE_H_HEADER_INCLUDED_AEA2B9D5
#define DATABASE_H_HEADER_INCLUDED_AEA2B9D5

#include "employee.h"

class database : public employee
{
 public:
 storedata();
 update();
 insert();
 enquiry();
 delete();
 verify();
 display();
 private:
 products;
 projects;
};
#endif
```
DATABASE.CPP:

```cpp
#include "database.h"
deletedata::storedata()
{
}
deletedata::update()
{
}
deletedata::insert()
{
}
deletedata::enquiry()
{
}
deletedata::delete()
{
}
deletedata::verify()
{
}
deletedata::display()
{
}

EMPLOYEE.H:

#ifndef EMPLOYEE_H_HEADER_INCLUDED_AEA2DB06
#define EMPLOYEE_H_HEADER_INCLUDED_AEA2DB06
class employee
{
 name;
 DOB;
 salary;
 exp;
 phno;
};
#endif

EMPLOYEE.CPP:

#include "employee.h"

RESULT

Thus the project is to develop an EMPLOYEE MANAGEMENT SYSTEM using the Rational Rose Software was done successfully.
AIM
To develop a project credit card system using the Rational Rose Software.

PROBLEM ANALYSIS AND PROJECT PLANNING

The Credit Card Processing System which is use to purchasing an item from any shop mall, and it is used to maintain the limitation of credit card balance and current transaction process could be update via credit card machine. This project mainly used for large amount of item can be easy to buy from anywhere and required transaction process should be maintained them.

PROBLEM STATEMENT

The customer should select the item to be purchase from the shop by using credit card payment then the vendor should give a bill for the selected item .The customer should give his card to swap and request for the kind of amount transaction. After processing the transaction, the CREDIT CARD MACHINE should give the balance print statement or receipt.

- Customer should select the item from the shop.
- Vendor makes the bill for the selected item.
- Customer gives the credit card to the vendor to swap the card.
- They required amount transaction is done by the card reader.
- Vendor will issue the balance statement to the customer.
- Customers put the signature in the receipt and return to the vendor

FUNCTIONALITY

Many members of the process lives to checking for the occurrence and transaction we all have to carry over sometimes user interface to make the transaction to be efficient.

ASSUMPTION AND DEPENDENCIES

The Vendor and Customer must have basic knowledge of computers and English Language. The vendor may be required to delivered the item purchased by the customer.

UML DIAGRAMS

USE CASE DIAGRAM

The use cases are a set of scenarios to guide together by a common user goal. A scenario is the sequence of steps describing an interaction between a user and their system.
CLASS DIAGRAM

The Class diagram the types of object in the system an the various kinds of static relation ships that exists among them.

STATECHART DIAGRAM

It is a familiar technique to describe the behavior of the system. Events involve in the state chart diagram a purchase, make transaction, delivery the item.
SEQUENCE DIAGRAM

It is a kind of interaction diagram in which an object is shown as a box at the top of the dash vertical line. This vertical line is called object life time. The life time represent the object's life during interaction object deletion is shown with a large x.
COLLABORATION DIAGRAM

In a collaboration diagram object are shown as icons as on. A collaboration diagram arrow indicates the message send within the given use case. The sequence is indicated by numbering the messages.

```
customer  vendor
1: select item  7: signature
2: bill the issue
3: swap the card
4: amount transaction
5: print statement
6: issue the statement
8: item delivery
```

COMPONENT DIAGRAM

The component diagram is represented by figure dependency and it is a graph of design of figure dependency.

```
card reader
credit card processing system
```

DEPLOYMENT DIAGRAM

A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3-dimentional box. Dependencies are represented by communication association.

```
credit card processing system
```

```
OUTPUT:

CARD READER.H:

```c
#ifndef CARD_READER_H_HEADER_INCLUDED_AEA2BF59
#define CARD_READER_H_HEADER_INCLUDED_AEA2BF59

class card reader
{
 public:
 make transition();
 print receipt();
 private:
 machine no;
 software;
 company name;
};
#endif
```

CARD READER.CPP:

```c
#include "card reader.h"
card reader::make transition()
{
}
card reader::print receipt()
{
}
```

CUSTOMER.H:

```c
#ifndef CUSTOMER_H_HEADER_INCLUDED_AEA2CAAD
#define CUSTOMER_H_HEADER_INCLUDED_AEA2CAAD

class customer
{
 public:
 purchase item();
 swap();
 private:
 name;
 age;
 signature;
 card no;
};
#endif
```

CUSTOMER.cpp:

```c
#include "customer.h"
customer::purchase item()
{
}
customer::swap()
```
**VENDOR.H:**

```c
#ifndef VENDOR_H_HEADER_INCLUDED_AEA2C1B6
#define VENDOR_H_HEADER_INCLUDED_AEA2C1B6

class vendor
{
 public:
 make bill();
 delivery item();
 submit();
 private:
 name;
 address;
 machine num;
};
#endif
```

**VENDOR.CPP:**

```c
#include "vendor.h"

vendor::make bill()
{
}

vendor::delivery item()
{
}

vendor::submit()
{
}
```

**RESULT**

Thus the project to develop credit card processing system using Rational Rose Software was done successfully.
E-BOOKS MANAGEMENT SYSTEM

AIM
To develop a project E-Book Management system using Rational Rose Software

PROBLEM ANALYSIS AND PROJECT PLANNING

E-book Management System gives an idea about how books are maintained in the particular websites. The books that are to be purchased, the books that are to be sold are maintained here. Further some additional details of the current books that is available in the store are also given. E-book Management System in this project is done in an authorized way. The password and user id has been set here.

PROBLEM STATEMENT

The website has to be maintained properly since the whole e-book purchase process can be improved. E-book management in this project gives the idea about how e-books are maintained in a particular concern. The book details which includes the number of books available, no of pages and price. E-book management system the E-book management in this project is understood by going through the modules that is being involved.

INTRODUCTION

E-book management gives an idea about how e-books are maintained in the particular concern. The e-books that are to be purchased, the e-books that are to be sold are maintained here. Further some additional details of the current e-book list that is available in the website are also given. E-book management in this project is done in an authorized way.

SCOPE

The scope of this e-book management is to maintain the book details after the purchase and list of reaming books available in the same book type.

UML DIAGRAMS:

USE CASE DIAGRAM

A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal. It is represented using ellipse. Actor is any external entity that makes use of the system being modelled. It is represented using stick figure
CLASS DIAGRAM

A class diagram in the unified modeling language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. It is represented using a rectangle with three compartments. Top compartment have the class name, middle compartment the attributes and the bottom compartment with operations.

SEQUENCE DIAGRAM

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. There are two dimensions. 1. Vertical dimension—represent time. 2. Horizontal dimension—represent different objects.

COLLABORATION DIAGRAM

A collaboration diagram, also called a communication diagram or interaction diagram., A sophisticated modelling tool can easily convert a collaboration diagram into a sequence diagram and the vice versa. A collaboration diagram resembles a flowchart that portrays the roles, functionality and behaviour of individual objects as well as the overall operation of the system in real time.
STATE CHART DIAGRAM

The purpose of state chart diagram is to understand the algorithm involved in performing a method. It is also called as state diagram. A state is represented as a round box, which may contain one or more compartments. An initial state is represented as small dot. A final state is represented as circle surrounding a small dot.

ACTIVITY DIAGRAM

Activity diagrams are graphical representations of workflows of stepwise activities and actions with support for choice, iteration and concurrency. In the Unified Modeling Language, activity diagrams can be used to describe the business and operational step-by-step workflows of components in a system. An activity diagram shows the overall flow of control. An activity is shown as an rounded box containing the name of the operation.
COMPONENT DIAGRAM
The component diagram's main purpose is to show the structural relationships between the components of systems. It is represented by boxed figure. Dependencies are represented by communication association.

DEPLOYMENT DIAGRAM
A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3-dimensional box. Dependencies are represented by communication association.
OUTPUT:

BOOKS.H:

#ifndef BOOKS_H_HEADER_INCLUDED_AEA2A1C0
#define BOOKS_H_HEADER_INCLUDED_AEA2A1C0

class books
{
    public:
        select();
        buy();
    private:
        operating system;
        computer architecture;
        dbms;
        webtechnology;
        ooad;
};
#endif

BOOKS.CPP:

#include "books.h"
books::select()
{
}
books::buy()
{
}

CUSTOMER.H:

#ifndef CUSTOMER_H_HEADER_INCLUDED_AEA29C65
#define CUSTOMER_H_HEADER_INCLUDED_AEA29C65

class customer
{
    public:
        login();
        payment();

    private:
        name;
        address;
        contact no;
};
#endif

CUSTOMER.CPP:

#include "customer.h"
customer::login()
{


```c++
#include "database.h"

database::store()
{
}
```

**RESULT**

Thus the project to develop E-book Management System using Rational Rose Software was done successfully
AIM
To develop a project on online recruitment system using Rational Rose Software.

PROBLEM ANALYSIS AND PROJECT PLANNING

The Online Recruitment System is an online website in which applicant can register themselves and then attend the exam. Examination will be conducted at some venue. The details of the examination, venue & Date of the examination will be made available to them through the website. Based on the outcome of the exam the applicant will be short listed and the best applicant is selected for the job.

PROBLEM STATEMENT

The process of applicants is login to the recruitment system and register for the job through online. The resume is processed by the company and the required applicant is called for the test. On the basis of the test marks, they are called for next level of interview. Finally the best applicant is selected for the job. This process of online recruitment system are described sequentially through following steps,
• The applicant login to the online recruitment system.
• They register to the company for the job.
• They appear for examination.
• Based on the outcome of the exam, the best applicant is selected.
• The recruiter informs the applicant about their selection.

INTRODUCTION

This software specification documents full set of features and function for online recruitment system that is performed in company website. In this we give specification about the system requirements that are apart from the functionality of the system to perform the recruitment of the jobseekers. It tells the usability, reliability defined in use case specification.

SCOPE

The scope of this online recruitment process is to select the best applicant from the list of applicant registered based on their performance in the recruitment process.

UML DIAGRAMS:

USE CASE DIAGRAM

A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal. It is represented using ellipse. Actor is any external entity that makes use of the system being modeled. It is represented using stick figure.
CLASS DIAGRAM

A class diagram in the unified modeling language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. It is represented using a rectangle with three compartments. Top compartment have the class name, middle compartment the attributes and the bottom compartment with operations.

SEQUENCE DIAGRAM

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. There are two dimensions.
1. Vertical dimension-represent time.
2. Horizontal dimension-represent different objects.
COLLABORATION DIAGRAM

A collaboration diagram, also called a communication diagram or interaction diagram. A sophisticated modeling tool can easily convert a collaboration diagram into a sequence diagram and the vice versa. A collaboration diagram resembles a flowchart that portrays the roles, functionality and behavior of individual objects as well as the overall operation of the system in real time.

2: verify login

1: login
4: register
6: verify applicant details
5: registered applicant details

Applicant

Database

3: valid login

recruiter

7: Send interview details
9: evaluate papers
8: Attends aptitude test
11: appears for technical round
12: Analysis the applicants Knowledge
10: Shortlist the applicant
13: Select talented applicant
15: Send appointment letter

Applicant

Test

Recruiter

14: Store selected applicant details

Database
STATE CHART DIAGRAM

The purpose of state chart diagram is to understand the algorithm involved in performing a method. It is also called as state diagram. A state is represented as a round box, which may contain one or more compartments. An initial state is represented as a small dot. A final state is represented as circle surrounding a small dot.

ACTIVITY DIAGRAM

Activity diagrams are graphical representations of workflows of stepwise activities and actions with support for choice, iteration and concurrency. In the Unified Modeling Language, activity diagrams can be used to describe the business and operational step-by-step workflows of components in a system. An activity diagram shows the overall flow of control.
COMPONENT DIAGRAM

The component diagram's main purpose is to show the structural relationships between the components of systems. It is represented by boxed figure. Dependencies are represented by communication association.
A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3-dimensional box. Dependencies are represented by communication association."
Applicant.h:

#ifndef APPLICANT1_H_HEADER_INCLUDED_AEA031CB
#define APPLICANT1_H_HEADER_INCLUDED_AEA031CB

class Applicant1
{
   public:
      Register();
      Login();
      Applicant Details();
   private:
      User name:String;
      password:String;
      Phone no:integer;
      Address:String;
      Name:String;
};
#endif

Applicant.cpp:

#include "Applicant1.h"
Applicant1::Register()
{
};
Applicant1::Login()
{
};
Applicant1::Applicant Details()
{
};

Database1.h:

#ifndef DATABASE11_H_HEADER_INCLUDED_AEA05C59
#define DATABASE11_H_HEADER_INCLUDED_AEA05C59

class Database1
{
   public:
      APs_details();
      tech_details();
      selected_applicant_details();
};
#endif

Database1.cpp:

#include "Database11.h"
Database1::APs_details()
{
Database1::tech_details()
{
}
Database1::selected_applicant_details()
{
}

**Recruiter1.h:**

```c++
#ifndef RECRUITER1_H_HEADER_INCLUDED_AEA06A89
#define RECRUITER1_H_HEADER_INCLUDED_AEA06A89
class Recruiter1
{
 public:
 APS_test();
 APS1_test();
 Tech_Round();
 Tech1_Round();
 private:
 Name:String;
 Destination:String;
 Phone no:integer;
 Marks_in_Aps:Integer;
 Marks_in_tech:Integer;
};
#endif
Recruiter.cpp:
#include "Recruiter1.h"
Recruiter1::APS_test()
{
}
Recruiter1::APS1_test()
{
}
Recruiter1::Tech_Round()
{
}
Recruiter1::Tech1_Round()
{
}

RESULT
Thus the project to develop online recruitment system using Rational Rose Software was done successfully.
AIM
To design a project Foreign Trading System using Rational Rose Software.

PROJECT ANALYSIS AND PROJECT PLANNING

The initial requirements to develop the project about the mechanism of the Foreign Trading System is bought from the trader. The requirements are analyzed and refined which enables the analyst (administrator) to efficiently use the Foreign Trading System. The complete project analysis is developed after the whole project analysis explaining about the scope and the project statement is prepared.

PROBLEM STATEMENT

The steps involved in Foreign Trading System are:
• The forex system begins its process by getting the username and password from the trader.
• After the authorization permitted by the administrator, the trader is allowed to perform the sourcing to know about the commodity details.
• After the required commodities are chosen, the trader places the order.
• The administrator checks for the availability for the required commodities and updates it in the database.
• After the commodities are ready for the trade, the trader pays the amount to the administrator.
• The administrator in turn provides the bill by receiving the amount and updates it in the database.
• The trader logs out after the confirmation message has been received.

INTRODUCTION

International trade is exchange of capital, goods, and services across international borders or territories. In most countries, it represents a significant share of gross domestic product (GDP). While international trade has been present throughout much of history (see Silk Road, Amber Road), its economic, social, and political importance has been on the rise in recent centuries. Industrialization, advanced transportation, globalization, multinational corporations, and outsourcing are all having a major impact on the international trade system. Increasing international trade is crucial to the continuance of globalization. Without international trade, nations would be limited to the goods and services produced within their own borders.

SCOPE

The are a lot of advantages in Forex Trading as compared to many other financial trading, like futures or stock trading. The Forex market is open 24 hour a day. Being the market available 24 hours a day, this gives the trader to choose which time they would like to trade. It requires only minimum beginning capital to start the Forex trade. Forex Trading has outstanding liquidity as it never closes.
UML DIAGRAMS:

USECASE DIAGRAM:

A use case diagram purpose is to present a graphical overview of the functionality provided by the system in terms of actors, their goals, and any dependencies between those use cases. A use case is an interaction between users and a system in a particular environment. It captures the goal of the users and the responsibility of the system to the user. It is represented using ellipse. Actor is a user playing a role with respect to the system. A single actor may perform many usecases. It is represented using a stick figure along with a label.

CLASS DIAGRAM

A class diagram is a type of static structure diagram that describes the structure of a system. The classes in the class diagram represent both the main objects and or interactions in the application. The class diagram is represented using rectangular boxes each of which contains three parts:

- The upper part holds the name of the class.
- The middle part contains the attributes of the class.
- The bottom part gives the operations or methods the class undertakes.
SEQUENCE DIAGRAM

A sequence diagram in unified modeling language is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. Sequence diagrams are sometimes called event diagrams, event scenarios, and timing diagrams. This diagram shows a parallel vertical line called lifelines. There are two dimensions in this diagram:
1. Vertical dimension-represents time.
2. Horizontal dimension-represents different object.

![Sequence Diagram](image)

COLLABORATION DIAGRAM

A collaboration diagram belongs to a group of UML diagrams called Interaction Diagrams. Collaboration diagrams, like sequence diagrams, show how the objects interact over the course of time. Collaboration diagrams show the sequence by numbering the messages on the diagram.

![Collaboration Diagram](image)
STATE CHART DIAGRAM

The state chart is used to model dynamic nature of a system. They define different states of an object during its lifetime. And these states are changed by events. So these diagrams are useful for reactive systems i.e., a system that responds to external or internal events. It describes the flow of control from one state to other state. The initial state is represented using the small dot. The final state is represented using a circle surrounded by a small dot.

ACTIVITY DIAGRAM

This diagram represents the graphical representation of workflows of stepwise activities and actions with support for choice, iteration and concurrency. It shows the overall flow of control.

COMPONENT DIAGRAM

The component diagram's main purpose is to show the structural relationships between the components of systems. It is represented by boxed figure. Dependencies are represented by communication association.
DEPLOYMENT DIAGRAM

A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3-dimensional box. Dependencies are represented by communication association."
OUTPUT:

Account.cpp:

```cpp
#include "Account.h"
Account::no()
{
}
Account::account pay()
{
}
```

Account.h:

```cpp
#ifndef ACCOUNT_H_HEADER_INCLUDED_AEA006E0
#define ACCOUNT_H_HEADER_INCLUDED_AEA006E0
class Account
{
    public:
        Account no();
        account pay();
    private:
        Acc no;
        balance;
        due;
};
#endif
```

Administrator1.h:

```cpp
#ifndef ADMINISTRATOR1_H_HEADER_INCLUDED_AEA01752
#define ADMINISTRATOR1_H_HEADER_INCLUDED_AEA01752
class Administrator1
{
    public:
        Bill1();
        Bill2();
        Trace order();
        pay bill1();
        pay bill2();
    private:
        Name: String;
        Id: String;
};
#endif
```

Administrator1.cpp:

```cpp
#include "Administrator1.h"
Administrator1::Bill1()
{
```
Item.h:

#ifndef ITEM_H_HEADER_INCLUDED_AEA043E5
#define ITEM_H_HEADER_INCLUDED_AEA043E5

class Item {
 public:
 Get perfume();
 Get dolls();
 private:
 Name: String;
 Id: integer;
 Rate: integer;
 Available: integer;
};
#endif

Item.cpp:

#include "Item.h"

Item::Get perfume()
{
}

Item::Get dolls()
{
}

Traders.h:

#ifndef TRADERS_H_HEADER_INCLUDED_AEA05F67
#define TRADERS_H_HEADER_INCLUDED_AEA05F67

class Traders {
 public:
 Login();
 Sourcing();
 place order();
 pay();
};
#endif
logout();
private:
 Username:String;
 Sourcing:String;
 Account no:integer;
};
#endif

Traders.cpp:

```cpp
#include "Traders.h"
Traders::Login()
{
}
Traders::Sourcing()
{
}
Traders::place order()
{
}
Traders::pay()
{
}
Traders::logout()
{
}
```

RESULT
Thus the project to develop foreign trading system using Rational Rose software was done successfully.
AIM

To develop a project on Conference management system using Rational Rose Software

PROBLEM ANALYSIS AND PROJECT PLANNING

The Conference Management System is an online website in which candidate can submit the paper and register themselves and then attend the conference. The paper will be reviewed. The details of the conference, date and time will be made available to them through the website. After getting the confirmation details the candidate should submit the revised and camera ready paper. Then the registration process will be done.

PROBLEM STATEMENT

The process of the candidates is to login the conference system and submit the paper through online. Then the reviewer reviews the paper and sends the acknowledgement to the candidate either paper selected or rejected. This process of on conference management system are described sequentially through following steps,

• The candidate login to the conference management system.
• The paper title is submitted.
• The paper is been reviewed by the reviewer.
• The reviewer sends acknowledgement to the candidate.
• Based on the selection, the best candidate is selected.
• Finally the candidate registers all details.

INTRODUCTION

This software specification document consist full set of features and function for online conference management system. In this we give specification about the system requirements that are apart from the functionality of the system to perform the candidate paper valuation. It tells the usability, reliability defined in use case specification.

SCOPE

The scope of this conference management process is to select the best candidate from the list of candidates based on their performance in the process.

UML DIAGRAMS:

USE CASE DIAGRAM

A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal. It is represented using ellipse. Actor is any external entity that makes use of the system being modeled. It is represented using stick figure.
CLASS DIAGRAM

A class diagram in the unified modeling language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. It is represented using a rectangle with three compartments. Top compartment have the class name, middle compartment the attributes and the bottom compartment with operations.
A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. There are two dimensions.
1. Vertical dimension-represent time.
2. Horizontal dimension-represent different objects.
COLLABORATION DIAGRAM

A collaboration diagram, also called a communication diagram or interaction diagram, is a sophisticated modeling tool that can easily convert a collaboration diagram into a sequence diagram and vice versa. A collaboration diagram resembles a flowchart that portrays the roles, functionality, and behavior of individual objects as well as the overall operation of the system in real time.

STATE CHART DIAGRAM

The purpose of state chart diagram is to understand the algorithm involved in performing a method. It is also called as state diagram. A state is represented as a round box, which may contain one or more compartments. An initial state is represented as a small dot. A final state is represented as a circle surrounding a small dot.
COMPONENT DIAGRAM

The component diagram's main purpose is to show the structural relationships between the components of a systems. It is represented by boxed figure. Dependencies are represented by communication association.

DEPLOYMENT DIAGRAM

A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3- dimensional box. Dependencies are represented by communication association.
Candidates.h

#ifndef CANDIDATES_H_HEADER_INCLUDED_AEA007DA
#define CANDIDATES_H_HEADER_INCLUDED_AEA007DA

class candidates
{
 public:
 login();
 submit the paper();
 revise,camera ready paper & submission();
 registration();
 private:
 name;
 collegename;
 department;
 paper title;
};
#endif

Candidates.cpp

#include "candidates.h"
candidates::login()
{
}
candidates::submit the paper()
{
}
candidates::revise,camera ready paper & submission()
{
}
candidates::registration()
{
}

Database.h

#ifndef DATABASE_1_H_HEADER_INCLUDED_AEA071EF
#define DATABASE_1_H_HEADER_INCLUDED_AEA071EF

class database 1
{
 public:
 code verification();
 reviewer accessibility();
 private:
 username;
 password;
};
#endif
Database.cpp

#include "database 1.h"
database 1::code verification()
{
}
database 1::reviewer accessibility()
{
}
Reviewer.h
#ifndef REVIEWER1_H_HEADER_INCLUDED_AEA03DB0
#define REVIEWER1_H_HEADER_INCLUDED_AEA03DB0
class reviewer1
{
 public:
 paperreview();
 sending paper confirmation details();
 private:
 name;
 dept;
 reviewerID;
};
#endif

Reviewer.cpp

#include "reviewer1.h"
reviewer1::paperreview()
{
}
reviewer1::sending paper confirmation details()
{
}

RESULT

Thus the project to develop conference management system using Rational Rose Software was done successfully.
AIM

To develop a project Business process outsourcing (BPO) management system using Rational Rose software.

PROBLEM ANALYSIS AND PROJECT PLANNING

Generally outsourcing can be defined as an organization entering into a contract with another organization to operate and managed one or more of its business processes. There are many problems faced by the BPO one among them is meeting their targets and leaving the concern very often and switch to another company. In this project we deal with the inbound system of the BPO. In inbound system the agent calls the customer from his database to sell his product.

PROBLEM STATEMENT

In this BPO inbound system, the process undergoing is that the agent tries to sell his product so that the agent gets the details of the customer from the database and pitches about his product and makes the sales successful. The communication is done through the telephone. Telephone is the major component used for this customer satisfaction service. The steps are as follows:

- The agent login to the website and enters the username and password. It checks for authorization.
- If the username and password is correct, it allows the agent to get the details of the customer from the database.
- Now the agent makes the call to the customer and pitches about the product.
- If the customer is satisfied, agent sells the product else disconnects the call.
- Agent proceeds with another call.

INTRODUCTION

BPO is typically categorized into back office outsourcing-which includes internal business functions such as human resources or finance and accounting, and front office outsourcing-which includes customer related services such as contact center services. BPO that is contracted outside a company’s country is called offshore outsourcing. BPO that is contracted to a company’s neighboring country is called near shore outsourcing. Given the proximity of BPO to the information technology industry, it is categorized as an information technology enabled service or ITES. Knowledge process outsourcing (KPO) and legal process outsourcing (LPO) are some of the sub-segments of business process outsourcing industry. In the following SRS the front office outsourcing is explained in detail.

SCOPE

Developing a good BPO management system. BPO is a way in which it helps to increase companies flexibility. As part of BPO, documents need to be managed between the outsourcing company and the offshore company. Multiple clients need to be managed by the BPO company.

UML DIAGRAMS:

USE CASE DIAGRAM

A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal. It is represented using ellipse.
Actor is any external entity that makes use of the system being modeled. It is represented using stick figure

CLASS DIAGRAM

A class diagram in the unified modeling language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. It is represented using a rectangle with three compartments. Top compartment have the class name, middle compartment the attributes and the bottom compartment with operations.
A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. There are two dimensions.
1. Vertical dimension-represent time.
2. Horizontal dimension-represent different objects.
COLLABORATION DIAGRAM

A collaboration diagram, also called a communication diagram or interaction diagram, is a sophisticated modelling tool that can easily convert a collaboration diagram into a sequence diagram and the vice versa. A collaboration diagram resembles a flowchart that portrays the roles, functionality and behaviour of individual objects as well as the overall operation of the system in real time.

STATE CHART DIAGRAM

The purpose of state chart diagram is to understand the algorithm involved in performing a method. It is also called as state diagram. A state is represented as a round box, which may contain one or more compartments. An initial state is represented as a small dot. A final state is represented as a circle surrounding a small dot.
COMPONENT DIAGRAM

The component diagram's main purpose is to show the structural relationships between the components of systems. It is represented by boxed figure. Dependencies are represented by communication association.

DEPLOYMENT DIAGRAM

A deployment diagram in the unified modeling language serves to model the physical deployment of artifacts on deployment targets. Deployment diagrams show "the allocation of artifacts to nodes according to the Deployments defined between them. It is represented by 3- dimensional box. Dependencies are represented by communication association."
OUTPUT:

CUSTOMER.H:

#ifndef CUSTOMER_H_HEADER_INCLUDED_AEA04D0E
#define CUSTOMER_H_HEADER_INCLUDED_AEA04D0E

class customer
{
 public:
 attend call();
 asks query();
 private:
 name;
 address;
 phone no;
};
#endif

CUSTOMER.CPP:

#include "customer.h"
customer::attend call()
{
}
customer::asks query()
{
}

DATABASE.h:

#ifndef DATABASE_H_HEADER_INCLUDED_AEA02629
#define DATABASE_H_HEADER_INCLUDED_AEA02629

class database
{
 public:
 get details();
 update detail();
 private:
 name;
};
#endif

DATABASE.CPP:

#include "database.h"
database::get details()
{
}
database::update detail()
{
}
PROCESSAGENT.h:

```cpp
#ifndef PROCESS_AGENT_H_HEADER_INCLUDED_AEA04D17
#define PROCESS_AGENT_H_HEADER_INCLUDED_AEA04D17

class process agent
{
    public:
        make call();
        pitches about product make sales();
        end the call();
    private:
        name;
        id;
        phone no;
};
#endif
```

PROCESSAGENT.CPP:

```cpp
#include "process agent.h"

process agent::make call()
{
}

process agent::pitches about product make sales()
{
}

process agent::end the call()
{
}
```

RESULT
Thus the project to develop BPO management system using Rational Rose Software and was done successfully